Public Protection . . . Is the Current Standard Enough?

From the Mountains to the Coast Floodplain and Stormwater Management in Maryland

AECOM

Arthur C. Miller, Ph.D., P.E

October 23, 2008

From the Mountains to the Coast

Floodplain – Georges Creek, Westernport, Maryland

Ocean City

Growing AECOM Water while making a positive difference in the environment

AECOM Water

Levees from New Orleans to Prince^{COM} George County

Anacostia Levee System

New Orleans Levee System

Growing AECOM Water while making a positive difference in the environment

AECOM Water

The Probability of an Event being exceeded in one year.

Prob [Exceedance] = 1%

There is a One Percent Chance that this event will occur in any one year

Percentile

•A **percentile** is the value of a variable below which a certain <u>percent</u> of observations fall. So the 99 percentile is the value (or score) below which 99 percent of the observations may be found.

Percentile = 1 – Prob [Exceed]

$$T_{R} = \frac{1}{Prob[0.01]} = 100 year$$

Typical Design Standards in AECOM Engineering Practice Image: Common standards in

	Туре	Design Standard
Storm	water Facilities	2 to 5 year
Culver	ts	10 to 50 year
Bridge	S	25 to 100 year
Floodp	lain Insurance	100 year
Levees	5	100 year
Dams		100 year to PMP

Where n is the year you want to evaluate the risk for, i.e., what is the risk of a 100-year event flood occurring within a 30 year mortgage for a home. AECOM

Risk = 26 %

AECOM

AECOM Water

Design Standard for Levees

Growing AECOM Water while making a positive difference in the environment

AECOM

AECOM

From Canal St.

at Mississippi

River to the

Lakefront

at U.N.O.

City of New Orleans Ground Elevations

NGVD

ELEVATIONS IN FEET

FLOODWALL ALONG 30 30 **MISSISSIPPI RIVER** HURRICANE **PROTECTION LEVEE** & FLOODWALL 23 FT 20 20 **18 FT PROJECT FLOWLINE** 17.5 FT AVG ANNUAL HIGHWATER 14 FT SPH DESIGN ELEV 11.5 FT 10 10 NORMAL LAKE 1.0 FT LEVEL GENTILLY RIDGE RIVER BANK $\mathbf{0}$ UNO ST. LOUIS CATHEDRAL CANAL ST AT RIVER TCHARTRAIN HORE **DERBIGNY AT I-10** -10 ANTHONY AT **GENTILLY BLVD** 5 WAINRIGHT DR AT L.C. SIMON **NAINRIGHT DR** DILLARD UNIN SIDE OF AUDE **MILDAIR DR** -20 MISSISSIPPI AT ALLEN CAMPUS \overline{v} ONO <u>а</u> С 5 ui

B

AECOM Water

New Orleans

If you would expect the life of a city such as New Orleans to be a minimum of 200 years, what is the risk of a 100 year event (Category 3 Hurricane) occurring within the next 200 years?

Risk = $\left(1 - \left(1 - \frac{1}{T_{100}}\right)^{200}\right)$

<u> Risk = 87 %</u>

Growing AECOM Water while making a positive difference in the environment

AECOM

Large Hurricanes of US

Hurricane	Year	Location	Category	Winds
Labor Day	1935	Florida Keys	5	200
Camille	1969	Miss.	5	190
Andrew	1992	SE FL	5	165
Charley	2004	Punta Gorda, FL	4	150
Katrina	2005	LA, MS, AL	4-5	140

AECOM

Flood walls and levees

Growing AECOM Water while making a positive difference in the environment

AECOM Wa

Seepage Pattern Through and Earth Embankment

AECOM Water

Seepage Pattern Through and Earth Embankment

Levee system in New Orleans

design of post-Betsy levees and floodwalls
 based on rudimentary storm surge models
 design hurricane is fast-moving category 3

- even category 3 storm could swamp system if storm stalled over New Orleans
- predicted that N.O. could be under as much as 20 ft water
- -16 ft and higher levees, floodwalls
- along Mississippi River, levees designed for the 200-year storm from inland
- -New Orleans described as bowl
- –as of 2003, Army Corps of Engineers reassessing levees

Problems caused by levees

 creates ecosystem problems since no flooding and limited access to the river –nutrients, debris, sand bars, …

 when levees fail, creates far more dramatic flood

 housing in locations where none would be without levees

 once flooding occurs, keeps flood waters from returning to river

Predictions of 2006 disaster

•Army Corps of Engineers, LA district

- •Greg Brouwer, Civil Engineering—ASCE, Vol. 73, No. 6, June 2003, pp. 46-55
- •Mark Fischetti, Scientific American, October, 2001, 76-85
- modeling efforts

-Louisiana State University

 Category 4 would drive surge 30 miles inland, surging water would fill Lake Pontchartrain, overflow, pour into city, flood city up to 20 ft.

-Corps

Predictions

flooding up to 20 ft

- -shut down city's power, water, and sewage plants
- -pumps clogged
- -levees will hold water in the city
- American Red Cross predicted 25,000-100,000 could die
- water not the only problem
 - -wind forces can rip rooftops off
- evacuation predicted to be difficult
 - -100,000 people in N.O. do not have easy access to cars
 - -major evacuation routes over water
 - -I-10 could be covered with water during Category 5

Compare to Netherlands

Much of Netherlands also below sea level
Flooding protection needed from North Sea and major rivers

Growing AECOM Water while making a positive difference in the environment

AECOM Water

Compare to Netherlands

1953 – North Sea storm surge at high tide destroyed the dykes, killing 1,800 people
Rebuilt flood protection system –10,000-year event for sea –1,250-year event for rivers
\$620 million spent annually on maintaining the current system

Risk = 2 %

Netherlands

- hydraulic sea wall 130 feet high by six miles long
 - giant steel curtain that can be opened or closed, depending on the water level
- flood gates
 - 1 1/2 -mile stretch of 62 gates to control the entry and exit of North Sea waters
 - close as soon as the water rises 6 feet
- large dams across rivers

Netherlands Storm surge barrier at Rotterdam

Growing AECOM Water while making a positive difference in the environment

AECOM

AECOM Water

 Anti-flood measures will be reviewed in all Dutch regions following Katrina disaster

complications

-climate change

- sea level rise significant, 23-39 inches per century
- most engineering design life ≈ 75-100 years
- -land sinking like New Orleans, not as fast

Growing AECOM Water while making a positive difference in the environment

The Current Standard

 Does the 1 percent standard effectively contribute to achieving the goals of the National Flood Insurance Program (NFIP) ?

 In reality the 1 percent flood represents a range of discharge and elevation values – Uncertainty

The Current Standard

•The 1 percent standard and many supporting NFIP regulations were designed to strike a balance between promoting economic growth and preventing flood damages in the development of floodplains; however, this perceived balance might be significantly different if the economic value of the natural and beneficial functions of floodplains is considered.

The Current Standard has lead to:

•The concentration of development in land areas protected by the 1 percent flood.

•Development outside the 1 percent floodplain. (The magnitude of the property damage in the 0.2 percent floodplain may be two to three times larger than in the 1 percent floodplain)

The Current Standard

 The need for a Federal standard does not mean, that one standard should limit floodplain management at the state and local levels. (States and their communities should exercise their responsibility to impose higher standards, where the health and safety of the population merits a higher standard for land use regulations)

The Current Standard

•The 1-percent standard is too low for removal of NFIP land use and insurance requirements for population centers behind levees.

•What should be the standard?•Prob [Exceed] = ?? 0.2 (500-year)