MDE Field Data Collection
Tool utilized for Limited Detailed Modeling

Dave Guignet, P.E., C.F.M.
Floodplain Mapping Coordinator
Maryland Department of the Environment

Andy Wohlsperger, C.F.M.
GIS Department Manager
AECOM Water – Watershed Concepts
Overview

• Maryland floodplain mapping update
• MDE Field Data Collection Tool
 – Reason for development
 – Implementation and development
 – Data Collection Process
 – Future possibilities

• Limited Detailed Study (Enhanced Approximate)
 – Review of FEMA study types
 – Link between MDE data collection tool and LDS
 – LDS approach
 – DFIRM Integration
Maryland Floodplain Mapping Update

- FEMA funded 13 MD counties to be updated with digital flood insurance rate maps
- MDE as the CTP recognized several opportunities:
 - Leverage new LIDAR dataset for the state
 - New hydrology by University of Maryland
 - Select the USACE for engineering support
 - Utilize Maryland Environmental Services for field data collection

- Key dataset was missing
 - Culvert crossings!
MDE Field Data Collection Tool

- **Reasons for development**
 - In need of structure survey data for modeling
 - Field data collection is expensive
 - Limited budget

- **Implementation and development**
 - Data to be georeferenced (ArcPad)
 - Data in standard format
 - Data intelligent enough for multiple applications
 - Direct link to photos, sketches, and notes
 - Visual Basics Programming by MES
Field Data Collection Process

Bridge # AA09130894-1

deck from downstream

deck from upstream

N 35° 59.540' W 076° 30.481'
09/13/2006 9:58:11 AM

MDE - Bridge Inspection

Bridge # FQ0126066B

11:51:09 AM

MDE - Bridge Inspection

N 35° 59.540' W 076° 30.481'
09/13/2006 9:58:11 AM

MDE - Bridge Inspection

Bridge # FQ0126066B

11:51:09 AM

MDE - Bridge Inspection
Import of Field Data into ArcMap

Export Form from Arc/Pad

Result: Shapefile Database in Arc/Map
Field Data in ArcMap
Field Data in ArcMap Cont.
Field pictures (Auto upload)
State\County road & bridge plans

Microsoft Excel - 31990005A.xls

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Culvert ID</td>
<td>31990005A</td>
<td>2</td>
<td>Y/R</td>
<td>DISCHARGE</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>257</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>601</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>751</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>884</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>1039</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Tc (min)</td>
<td>hours</td>
<td>11</td>
<td>CN</td>
<td>12</td>
<td>Area (Ac)</td>
</tr>
<tr>
<td>13</td>
<td>Elevation adjustment</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>FIELD DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>inlet elevation</td>
<td>13.76</td>
<td>13.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>outlet elevation</td>
<td>14.98</td>
<td>15.09</td>
<td>0.2 outlet elevation</td>
<td>15.12</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Number of barrels</td>
<td>1</td>
<td>number of barrels</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Shape</td>
<td>CIRCULAR</td>
<td>open</td>
<td>size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Material</td>
<td>Concrete</td>
<td>5.5</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Inlet headwall and wingwalls 45 degrees</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Inlet depression</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>culvert length</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>DWNS channel elev</td>
<td>16.28</td>
<td>13.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>DWNS channel elev 2</td>
<td>15.02</td>
<td>14.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>length</td>
<td>413</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AS BUILT
MAR 11 1981

State of Maryland
Department of Transportation
State Highway Administration

Riprap Inlet & Outlet Ditch
Scour Reports (reduced data entry)

CALVERT COUNTY
DEPARTMENT OF PUBLIC WORKS

CALVERT COUNTY
ESTABLISHED 1654

2006 BRIDGE INSPECTION REPORT

BRIDGE NO. C-0005
DALRYMPLE ROAD OVER
Reference information
Digital sketch tool
Future Opportunity for Collection Tool

- .NET development
- LiDAR Integration (3D)
- Integrate Permit and Field Data w/ Models
- Multiple Users – GIS Tool (MDE)
- GIS Hydro (Inventory tool for Models)
- Web access (Likely) / GeoDatabase
- Wetland Assessment Tools (at MDE)
FEMA Study Types - LDS

- FEMA Study Types
 - Detailed Study
 - 1%, 0.2%, FW
 - Approximate Zone A
 - Redelineation

- FEMA Limited Detailed Modeling (Enhanced approximate)
 - Limited structure survey
 - No cross section survey (taken from terrain)
 - 1% annual chance flood hazard delineated
 - placement of BFEs and XS on DFIRM possible
General Survey Requirements for LDS

<table>
<thead>
<tr>
<th>LDS Requirement</th>
<th>MDE Survey tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey Notes</td>
<td>✔</td>
</tr>
<tr>
<td>Survey Sketch</td>
<td>✔</td>
</tr>
<tr>
<td>Survey Coordinates</td>
<td>✔</td>
</tr>
<tr>
<td>4 Photos (US face & Channel; DS face & Channel)</td>
<td>✔</td>
</tr>
<tr>
<td>Measurements</td>
<td>✔</td>
</tr>
</tbody>
</table>

![Survey Images]
Collected Information

- TOR – Top of Road elevation
- Hydraulic width, Pier and Deck dimensions
- Culvert size, length and material
- Channel Measurements
 - Taken at upstream face of the structure
 - Top width
 - Bottom width
 - Channel bank elevations
 - invert
Graphics

[Diagram showing various measurements and relationships for channel and road design, including top width, deck thickness, hydraulic width, and channel elevation.]
Utilization of survey data for LDS

- Survey data gets imported into Open Inventory Module of WISE
- Stored in database format and can be edited and blended with terrain data
- Export to txt format for HEC RAS import
- Modeling performed in HEC RAS
- Boundary delineation performed within WISE
 - GeoRAS
Survey data for in HEC RAS
DFIRM Production

- Merging of boundary data
- Base data prep
- DFIRM DB creation (GIS)
- Panel border creation
- Annotation
Questions?