The Evaluation of Watershed Management Scenarios and the Development of Prioritization Schemes to Restore and Protect Streams and Watersheds

Mary L. Searing, P.E., D.WRE Water Resources Service Director

Presented at the Maryland Association of Floodplain and Stormwater Managers Conference October 23, 2008

A Changing Landscape

Local jurisdictions are experiencing a variety of stressors and continued changes in land use

Regulatory Mandates

Local jurisdictions also face numerous regulatory requirements

Big Question?

How can local jurisdictions choose streams and subwatersheds that are in need of restoration or preservation with the limited resources available to them?

A Method for Evaluating Watersheds

Select indicators of importance to the local jurisdiction

Quantitative

- Landcover
- Imperviousness

Qualitative

- Steep slopes layer (DEM derived)
- Wetland layers (MD DNR)
- FEMA 100 year floodplain
- Greenway
- Critical area layer
- Regulatory stream buffer layer

A Method for Evaluation

Quantitative Evaluation: Water Quality Equation Based on <u>Simple Method</u> – Literature Values for EMCs and BMP Efficiencies

Qualitative Evaluation: GIS Data

Spreadsheet combining the equation and GIS results and series of rules

Quantitative Evaluation

Landcover & Imperviousness

Calculate Runoff

Calculate Pollutant Load

Calculation of Pollutant Load Water Quality Equation Based on Simple Method

First, the runoff coefficient for each land use type must be derived with the equation:

Rvu = 0.05 + (0.009 * lu)

Where:Rvu = Runoff coefficient for land use type u, inchesrun/inchesrain.Iu= Percent Imperviousness applicable to the scenario modeled.

The pollutant loads are then calculated with the following equation:

L = Su (P*Pj*Rvu*Cu*Au*2.72/12)

Where:

L = Pollutant loads for the watershed understudy, lbs/year P = Precipitation, inches/year (42.9 inches for Washington, D.C. Region) Pj = Ratio of storms producing runoff (default 0.9) Rvu = Runoff coefficient for land use type u, inchesrun/inchesrain Cu = Event Mean Concentration for land use type u, milligrams/liter Au = Area of land use type u, acres

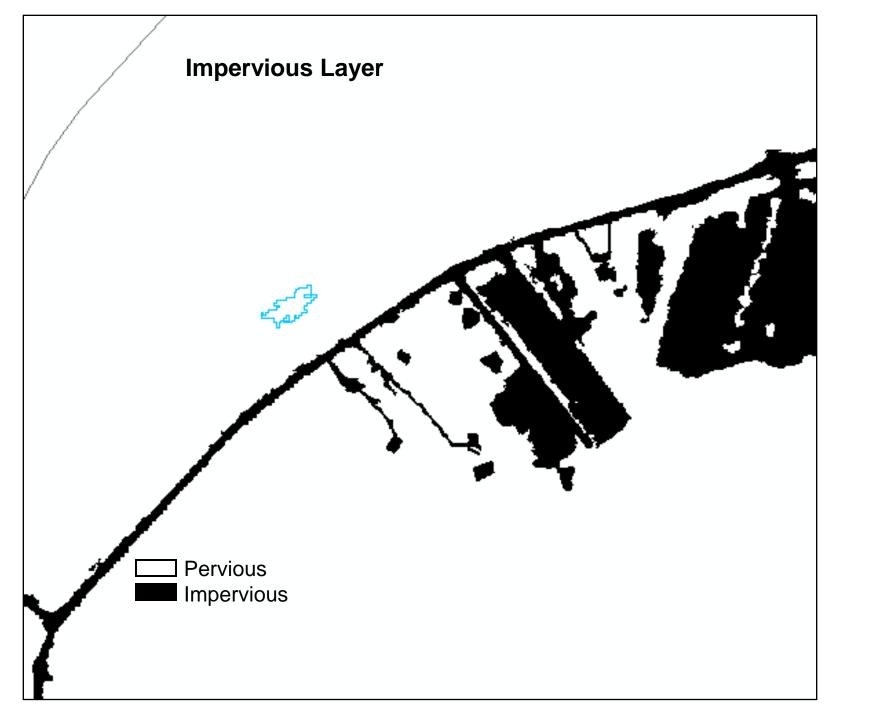
Literature Values

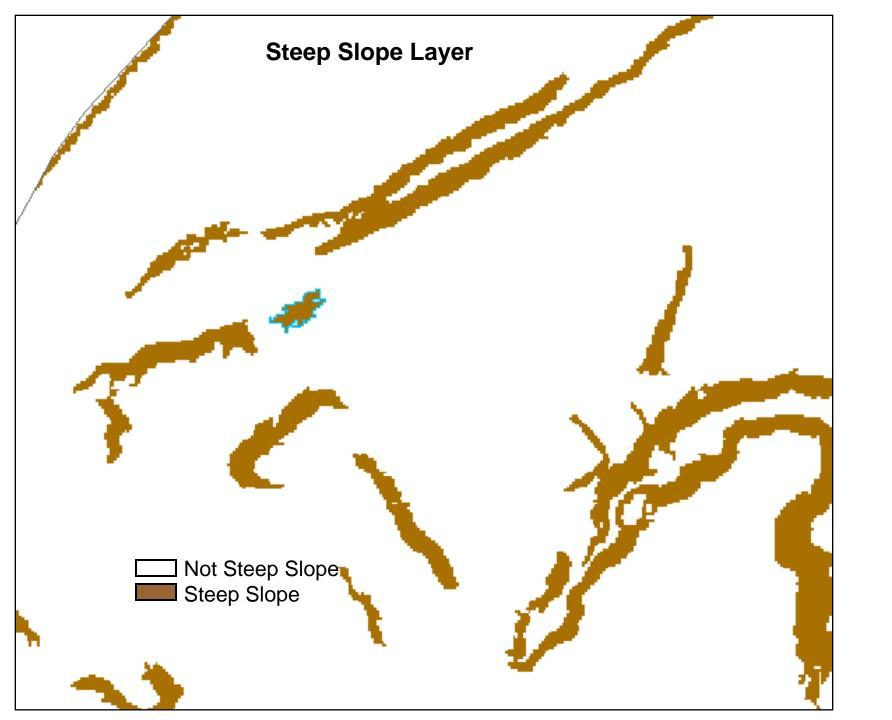
Literature Values for EMCs and BMP Efficiencies

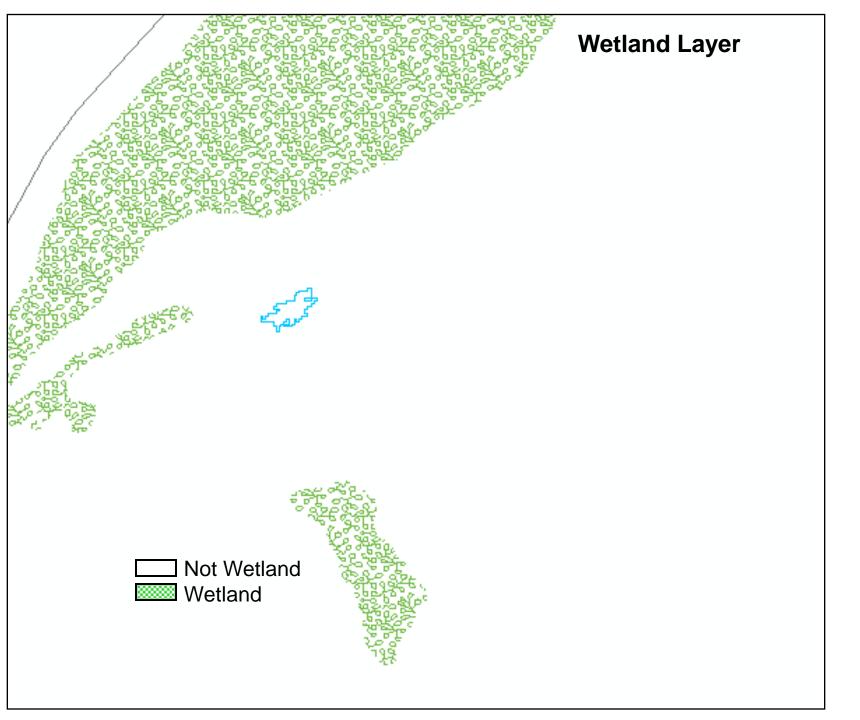
Code	Landcover	TMDL Category	% Impervious	TN	ТР
PAS	Pasture	NPS Agriculture	0.00	1.71	1.00
SRC	Single Row Crop	NPS Agriculture	1.00	1.71	1.00
AIR	BWI Airport	NPS Urban	85.00	2.24	0.30
CIT	City of Annapolis	NPS Urban	0.00	0.00	0.00
COM	Commercial	NPS Urban	85.00	2.24	0.30
IND	Industrial	NPS Urban	72.00	2.22	0.19
R11	Residential 1 acre	NPS Urban	13.00	2.74	0.32
	Residential 1 acre with Cluster				
R11C	Development	NPS Urban	8.00	1.95	0.24
	Residential 1 acre with High Density				
R11CD	Cluster Development	NPS Urban	10.00	2.19	0.27
R12	Residential 1/2 acre	NPS Urban	18.00	2.74	0.32
R14	Residential 1/4 acre	NPS Urban	20.00	2.74	0.32
R18	Residential 1/8 acre	NPS Urban	34.00	2.74	0.32
	Residential 20 acre - equivalent to RA				
R20	zoning	NPS Urban	2.00	1.15	0.15
R21	Residential 2 acre	NPS Urban	13.00	2.74	0.32
	Residential 2 acre with Cluster				
R21C	Development	NPS Urban	6.00	1.95	0.24
	Residential 2 acre with High Density				
R21CD	Cluster Development	NPS Urban	8.00	2.19	0.27
RWD	Residential Woods	NPS Urban	6.00	1.55	0.19
TRN	Transportation	NPS Urban	75.00	2.59	0.43
FRW	Forested Wetlands	Other NPS	0.00	1.15	0.15
OPS	Open Space	Other NPS	1.00	1.15	0.15
OPW	Open Wetlands	Other NPS	0.00	1.15	0.15
UTL	Utility	Other NPS	75.00	2.59	0.43
WAT	Water	Other NPS	0.00	1.20	0.03
WDS	Woods	Other NPS	0.00	1.15	0.15

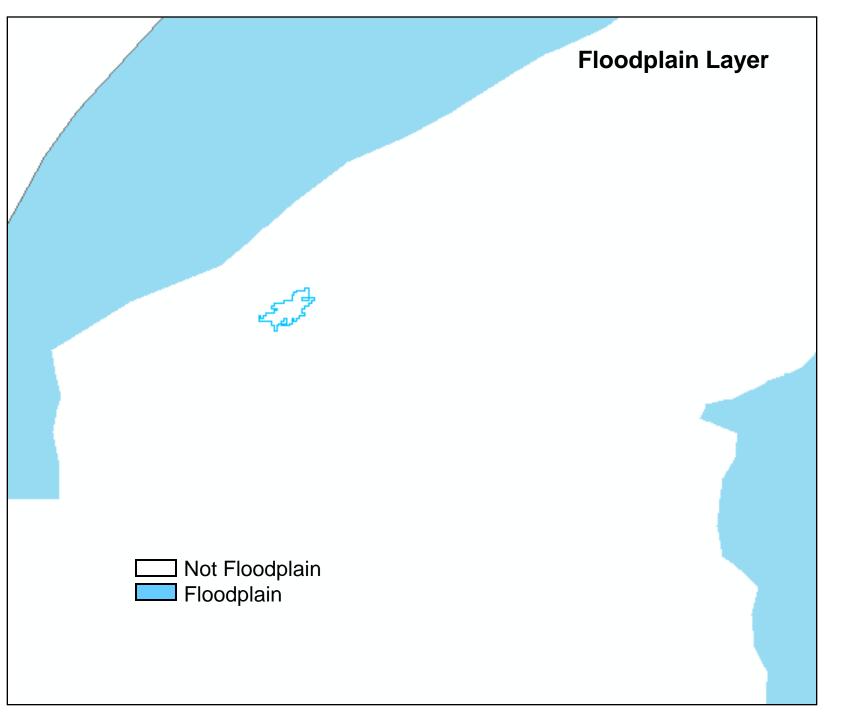
	AA Co BMP Code	County Name	τN	ΤР	BMP Group					
	DP	Detention Structure (Dry Pond)	5	10						
	UGVAULT	Underground Storage	5		Detention Dry					
	UGS	Underground Storage	5	10	Detention Dry					
	ED	Extended Detention	20	20	Extended Detention Dry					
	EDSD	Extended Detention Structure	20	20	Extended Detention Dry					
	EDSD	Dry Microbasin - Extended	20	20	Extended Detention Dry					
	мв	Detention Structure Dry	20	20	Extended Detention Dry					
	ASCD	Attenuation Swale/Check Dam	40		Filtration					
	ATTENSWA	Attenuation Swale	40		Filtration					
	STMCEPTOR	Stormceptor	40		Filtration					
	WQINLET POSAND	Water Quality Inlet (OGS) Pocket Sand Filter	40 40	60	Filtration Filtration					
	GBMP	Bioretention Facility	40		Filtration					
	ATTTRENCH	Attenuation Trench	50		Infiltration					
	DW	Dry Well	50		Infiltration					
	DWIT	Dry Well - Infiltration Trench	50		Infiltration					
		Dry Well - Infiltration Trench								
	DWITCE	with Complete Exfiltration	50	70	Infiltration					
	DWITCE	Dry Well - Infiltration Trench with Complete Exfiltration	50	70	Infiltration					
-	DWITCE	Dry Well - Infiltration Trench	50	70	Infiltration					
	DWITCW	with Complete Exfiltration	50	70	Infiltration					
	Difficit	Dry Well - Infiltration Trench	00	10						
	DWITPE	with Partial Exfiltration	50	70	Infiltration					
		Dry Well - Infiltration Trench								
	DWITWQE	with Water Quality Exfiltration	50	70	Infiltration					
		Extended Detention Structure								
	EDSDITCE	Dry, Infiltration Trench with Complete Exfiltration	50	70	Infiltration					
	IB	Infiltration Basin	50		Infiltration					
	ю	Infiltration Trench with Complete	50	10						
	IITCE	Exfiltration	50	70	Infiltration					
	INPOND	Infiltration Basin No Outfall	50	70	Infiltration					
	IT	Infiltration Trench	50	70	Infiltration					
		Infiltration Trench, Extended								
-	ITVSW	Detention	50	70	Infiltration					
	ITCE	Infiltration Trench with Complete Exfiltration	50	70	Infiltration					
	ITCE		50	10						
		Infiltration Trench with Complete								
	ІТСЕМВ	Exfiltration, Microbasin	50	70	Infiltration					
		Infiltration Trench with Partial								
	ITPE	Exfiltration	50	70	Infiltration					
		Infiltration Trench with Water	50	70	he filter til en					
	ITWQE OGS	Quality Exfiltration Oil Grit Seperator	50 50	70 70	Infiltration Infiltration					
	000	Oil Grit Seperator Infiltration	50	70						
		Trench with Complete								
	OGSITCE	Exfiltration	50		Infiltration					
	PNDTR	Same as infiltration basin	50		Infiltration					
	PP	Porous Pavement	50		Infiltration					
	SB	Infiltration Basin Water Quality Infiltration Trench	50	70	Infiltration					
	WQITPE	water Quality Inflitration Trench with Partial Exfiltration	50	70	Infiltration					
	WQP	Water Quality Trench	50		Infiltration					
	LS	Level Spreader	0	0	Other					
	OTHER	Other	0	Õ	Other					
	Redevelop	Redevelopment	0	0	Other					
	Pretreatment	Pretreatment	0	0	Other					
	Credits	Credits	0	0	Other					
	PL	Plantings Extended Detention Structure	0	0	Other					
	EDSW	Wet	20	45	Wet Structures					
	EXPOND	Wet Pond	20		Wet Structures					
	SM	Shallow Marsh	20	45						
	SW	Wet Structure	20	45						
	WP									
		Retention Structure (Wet Pond)	20	45	Wet Structures					

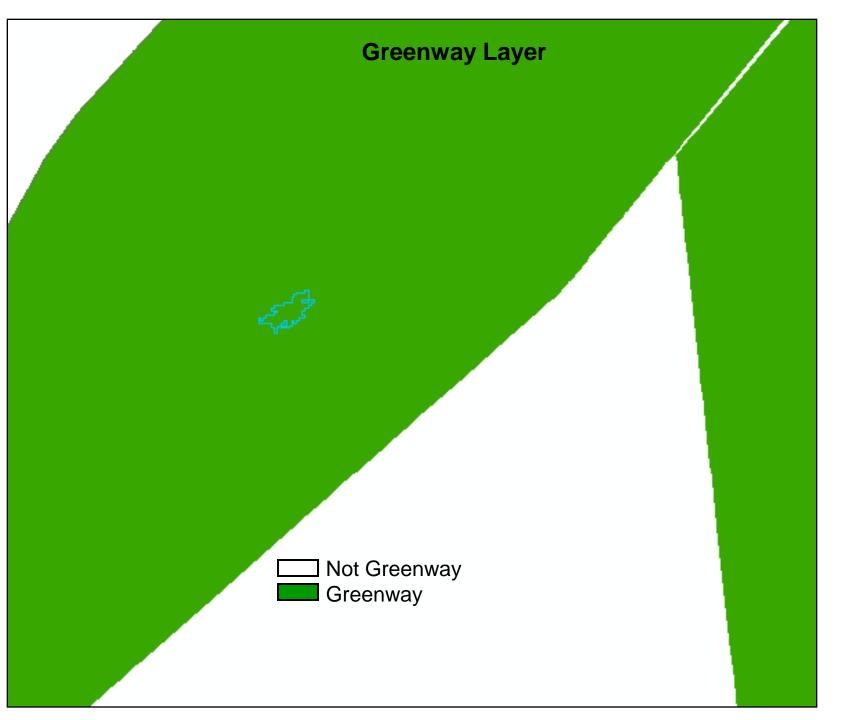
Literature Values, cont.

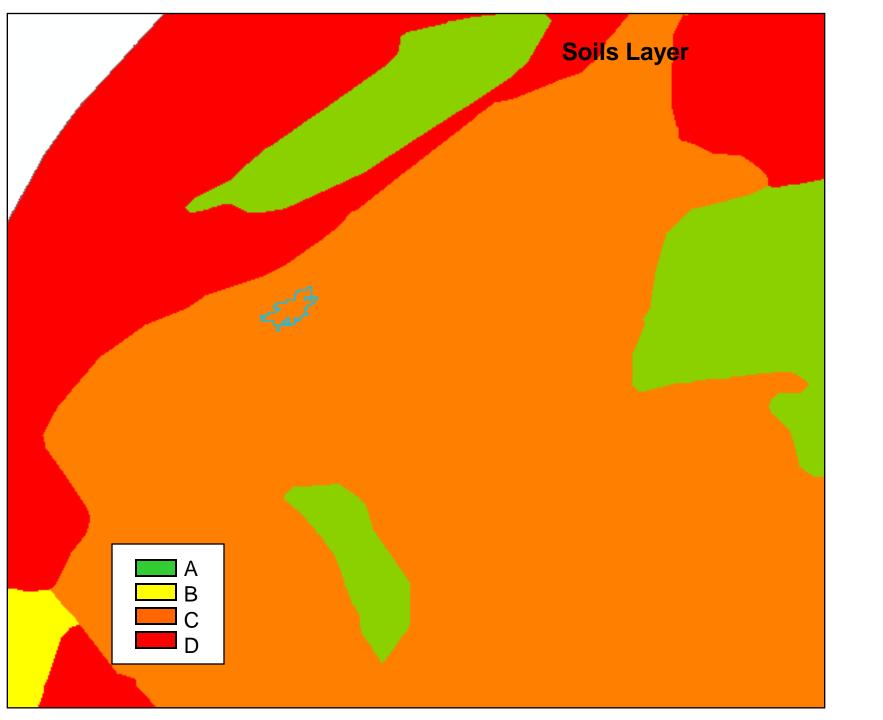


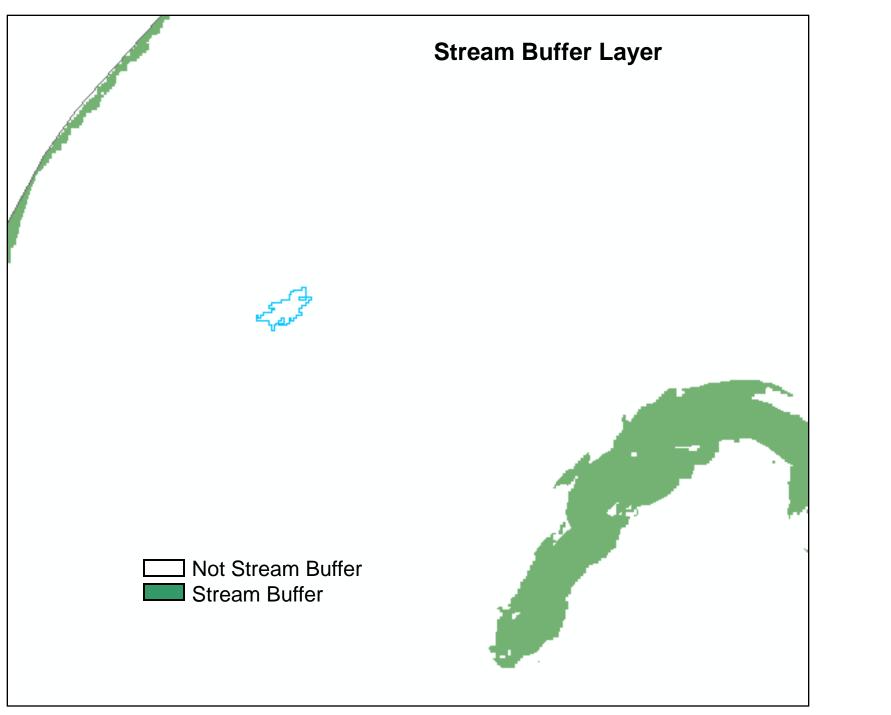

Residential ½ acre TN: 2.74 mg/L
18% impervious TP: 0.32 mg/L


Qualitative Evaluation


Collect and Evaluate GIS Databases of Indicators:


Example of how a polygon representing a piece of land is attributed in the GIS system for restoration or preservation assessment.





n 27

All Layers

GIS Layer	Has Attribute				
Impervious	No				
Steep Slope	Yes				
Wetland	No				
Floodplain	No				
Greenway	Yes				
Soil Group	С				
Stream Buffer	No				

Analysis of Indicators

Spreadsheet combining the equation and GIS results and series of rules:

C		9 - (*	u →) ∓							Microsof	t Excel			
	Home Insert Page Layout Formulas Data Review View													
	Paste	∦ Cut ⊫⊇ Copy ∛ Format F							Wrap Text Merge & Cen	ter • \$ •	al % • • •	Col	nditional matting ▼	Format Cell as Table * Styles *
	Clipboard 🗟 Font 🗟 Alignment 🗟 Number 🗟 Styles													
A1 🔹 🏂 Polygon ID														
ſ	sample data priority.xls [Compatibility Mode]													
	4	А	В	С	D	E	F	G	Н	1	J	K	L	М
								Steep					Stream	
	1	Polygon ID	Acres	Landcover	TN Load	TP Load	Impervious	Slope	Wetland	Floodplain	Greenway	Soil	Buffer	Rating
	2	1000	0.0125	Residential	0.001916	0.005213	1	1	1	1	1	С	1	Worst
	3	1001	0.0036	Commercial	0.012147	0.000526	1	0	0	1	1	В	0	Below Average
	4	1002	0.0254	Woods	0.164879	0.000125	0	1	0	0	1	С	0	Best
	5	1003	0.0012	Residential	0.020034	0.003256	0	0	0	0	0	В	0	Above Average
	6													
	Summary TN Calculation / TP Calculation / 🖏													

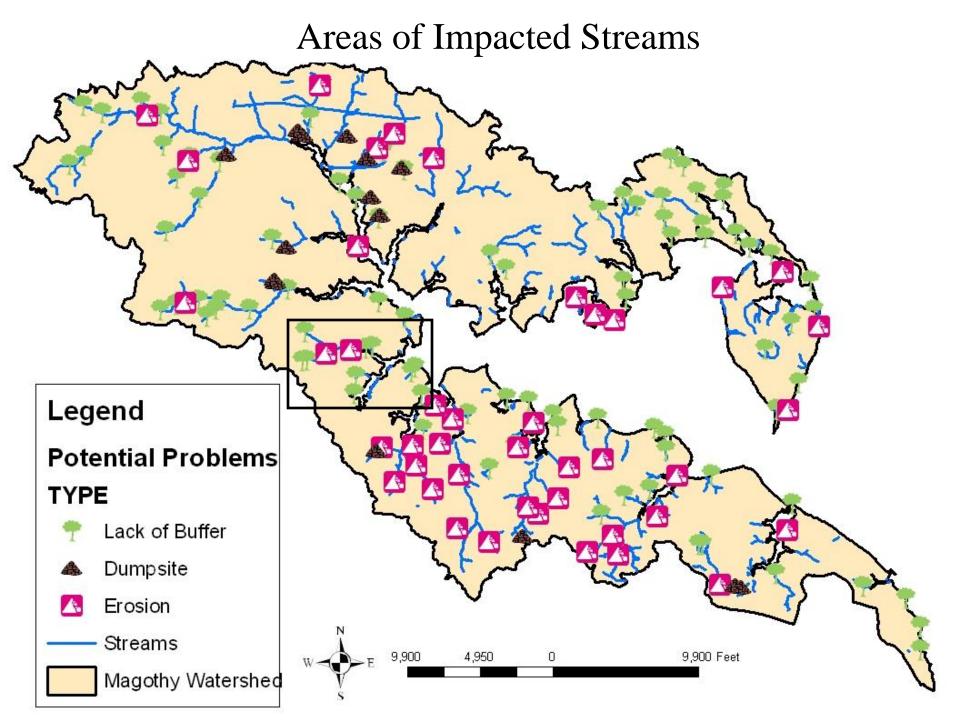
Can add weights to particular indicators, if desired.

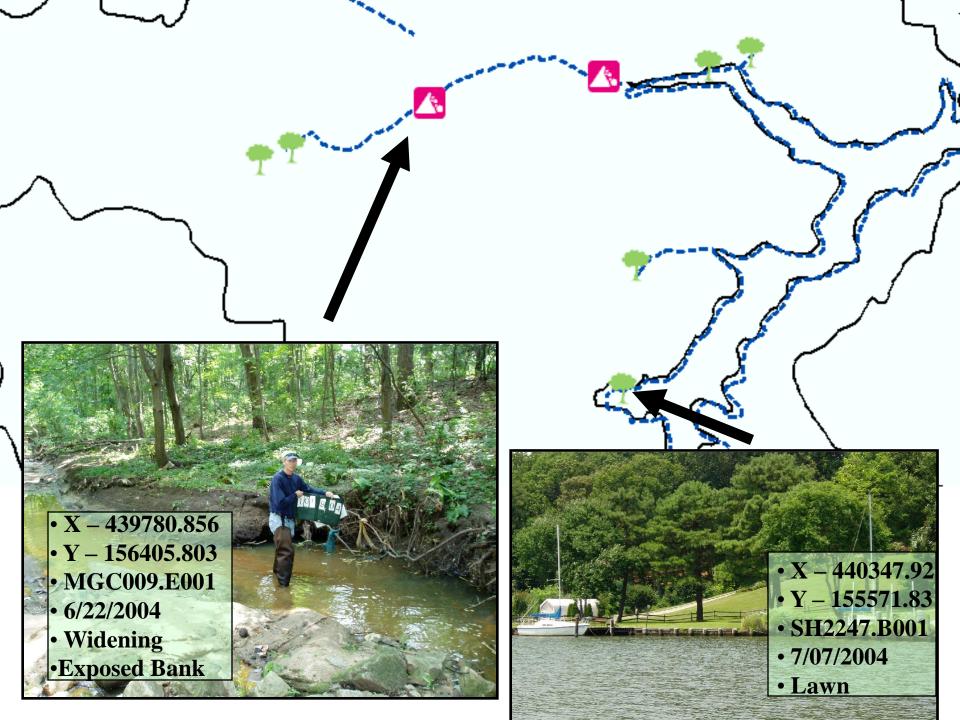
Prioritization Scheme for Restoration

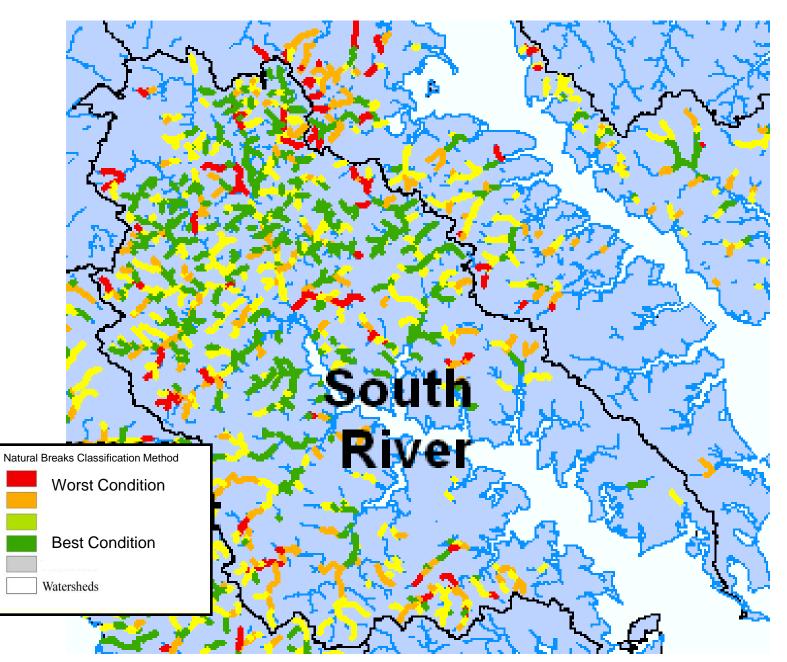

Baltimore City

Howard County

Prince Georges County


Subwatershed Characterization of Condition


Severn Mainstem 1


A Method for Evaluating Streams

Choose Indicators of Importance

Evaluation of Streams for Restoration

Mary L. Searing, P.E, D.WRE Greenhorne & O'Mara <u>msearing@G-and-O.com</u> 301-220-1879

GREENHORNE & O'MARA

CONSULTING ENGINEERS

Inspired Solutions, Improving Lives