Meeting FEMA's Floodplain Boundary Standard

Quick Generation of Risk Class Maps and Automated Methods for Conducting Floodplain Boundary Standard Self-Certification Audits

Laura Chap, P.E., CFM

What is the Floodplain Boundary Standard?

Table 1. Floodplain Boundary Standard for Flood Insurance Rate Maps							
		Delineation Reliability of the floodplain per study methodology ¹					
Risk							
Class	Characteristics	Detailed	Approximate *				
	High population and densities within the floodplain,						
А	and/or high anticipated growth	+/- 1.0 foot/ 95%	+/- 1/2 contour 95%				
	Medium population and densities within the						
В	floodplain, and/or modest anticipated growth	+/- 1.0 foot/ 90%	+/- 1/2 contour 90%				
	Low population and densities within the floodplain,						
С	small or no anticipated growth	+/- 1.0 foot/ 85%	+/- 1/2 contour 85%				
D	Undetermined Risk, likely subject to flooding	NA	NA				
E	Minimal risk of flooding; area not studied	NA	NA				

Standard includes a 38 foot horizontal tolerance Requires self-certification audits to demonstrate compliance

How are Risk Classes Defined?

• PM 38:

Can be based on population, growth, repetitive losses

• FBS G&S:

Housing units, flood insurance policies and claims, repetitive losses, declared disasters, critical facilities, state and local ordinances, probability of loss of life or property

Quick Generation of Risk Class Maps

- Developed for and accepted for use in FEMA Region V
- Based on available US Census data: census tract and urban area/urban cluster shapefiles
- Uses three criteria:
 - Population density
 - Population growth
 - Urban/rural areas

Census Tract Data

& Alcovy_Cedar.mxd - ArcMap - ArcView	
Elle Edit View Insert Selection Tools Window Help	
Spatial Analyst + Layer lab.ced.grid - 38 📐	
Spatial Adjustment マ 🖡 グクトロビ 川 🗐 沙 🚩 XTools Pro マ 🌾 ノ 🕸 🐼 📓 🐿 マ 🌑	
👰 @ 🕼 🗟 🖸 🗇 🖗 🚽 🏧 🐨 🖃 📾 RAS Geometry 🔹 Floodplain Mapping 🔹 🖌 🕌 Ц 🖉 🤝 🛷 🎝 ApUtilities 🔹 Help 🔹 🗋 🖀 🖉 🖇 🖻 🛍 🖌 🗛 🗢 🤹 👘 117733.344 💿 🛒 🛃	□ № 億
🔍 🔍 👯 👯 🕈 🖗 🗣 🖗 🗈 💺 🜒 🏘 🎄 🎆 盘 🐔 🔍 🖽 🕀 🗰 💥 🖉 🕮 👘	
●●●□ ■ ■ ■ ■ ■ □ ゴーナオ 冬豆豆 □ ○	
Editor + F - Task: Create New Feature - Target: Ta	
	<u>-</u>
	•
	-5303467 9834140.35 Feet

Step 1: Rank by density

Rank census tracts by density; group into thirds

PBS

Region V Statistics, Step 1

Class	% Area	% Population
Α	0.65%	30.18%
В	3.56%	36.22%
С	95.79%	33.60%

Region V Map, Step 1

Step 2: Determine high growth areas

• Establish a threshold for high growth

PBS

- National population growth was 13%; set threshold for high growth and minimum density
- Move high growth areas from groups 2 and 3 to group 1

Region V Statistics, Step 2

Class	% Area	% Population
А	2.96%	38.81%
В	2.90%	30.66%
С	94.14%	30.53%

Region V Map, Step 2

Step 3: Determine urban areas

- Use census determined urban area urban cluster data
- Move urban areas/urban clusters from group 3 to group 2
- This step breaks the census tracts, so population statistics cannot be directly determined.

Region V Map, Step 3

Step 4: Join to stream data

- Attribute National Hydrography Dataset medium resolution data with tract risk class
- If a stream segment crosses a risk class, round to higher risk class

Sample Region V Map, Step 4

Advantages/Disadvantages

- Advantages
 - Quick to generate
 - Objective
- Disadvantages
 - Does not account for all possible criteria

Basic Principles for Automating Self-Certification Audits

- Follow the steps for GIS-based audits outlined in the FEMA G&S
- Use the tools available with your ArcMap/ArcInfo license; supplement with freeware and scripts available on the ESRI support site
- Link together as many steps as possible with ArcMap ModelBuilder

ArcMap ModelBuilder Editing Interface

ArcMap ModelBuilder Run Interface

<mark>≻</mark> Zor	e_AE_Pass1_9_2		
0	Input Audit Points Blck Br Trib1 audit points	▼ 🚅 Input Audit	Points
0	Input Ground TIN TODO TIN Input WSEL TIN	▼ 🖻 No description	available
Ű	Input Tolerance		
	J.		
		OK Cancel Environments << Hide Help	~

Basic Steps for Zone AE Audits

Pass 1 – Vertical Tolerance

- Generate points every 100 feet along the boundary
- Create WSEL and topographic TINs
- Pull elevations from each TIN at the test points, and compare to see if in tolerance

Zone AE – Pass 1

Attributes of Alcovy_audit_pts

Basic Steps for Zone AE Audits

Pass 2 – Horizontal Tolerance

- Select the points failing Pass 1 and apply a 38 foot buffer
- Determine the minimum and maximum ground elevations within that buffer
- Determine whether the WSEL TIN elevations read at that point fall between the minimum and maximum ground elevations

Zone AE – Pass 2

Basic Steps for Zone A Audits

Pass 1 – Vertical Tolerance

- Generate cross sections every 500 feet along the stream centerline; create pairs of points by intersecting the floodplain with the cross section
- Read elevations at each point from the topo TIN
- Compare elevations of points across stream to verify they are within tolerance

Zone A Audits

🗣 FBS.mxd - ArcMap - ArcView											
Elle Edit View Insert Selection Icols Window Help											
Spatial <u>A</u> nalyst 👻 Layer:	stmarygrid 💌 🧖 🗽	Spatial Adjustment	- k # # @) H H H	□ ∮ 撃 XTo	ools Pro 👻 📗 🥒	N N H H • •				
		RAS Geometry - Floodpl	ain Mapping 👻 🕯	<mark>≍ ≍ 11</mark> §	🗢 🗢 🞜 ApUtiliti	ies • Help • [) 🚅 🖬 🚑 🕺 🖻	💼 🗙 🗠 🔶 1:28	,396 🔹 🏒	🔊 🚳 🗖 😽 🕱	
🔍 Q, XX XX 🖑 🥥 🗭 🗎) 🖗 🕨 🚯 🏔 🐔 🐔 🖸 📴	3D Analyst ▼ Layer stm	arygrid	• 28	».↔÷≥≤						
	H 🔠 🍕										
Editor - 🕨 🖋 Tas	k; Create New Feature 🖃 🛛 Target										
		T V RAD		6	\square	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sum 1$	\approx (, (\sim		
E 🗲 Layers 🔼		C Att	ributes of a	glencoe_	_auditpts_3_	fail2					
⊡ ⊠ giencoe_audii	LANI M		FID Shape*	FID_Xsec	FIRST_Lo_G	LAST_Lo_Gr	FIRST_Hi_G	LAST_Hi_Gr In	iTol2 InTol2_N		
🗉 🗹 glencoe_audit			0 Multipoint	7	11.955154	12.912131	12.693439	13.610693 FAIL 13.517646 FAIL	0	in to other Zone & areas	
•			2 Multipoint	9	10.727876	12.537500	10.955063	12.847549 FAIL	0 Tie	-in to other Zone A areas	
■ I glencoe_audit		JN 1 1 /////	3 Multipoint 4 Multipoint	10	9.004412 8.884000	10.918391	9.296658 8.884000	11.469700 FAIL 11.146725 FAIL	0 Tie 0 Tie	-in to other Zone A areas -in to other Zone A areas	
• • I cat 92 audit		MG {{ } ¶	5 Multipoint	12	8.884000	12.360610	9.228099	12.712638 FAIL	0		
E E sat_oz_aduit	V SAMA	幻れ `ノ///) 日 -	6 Multipoint 7 Multipoint	14	13.497340	12.672345 12.175548	13.872680	13.138227 FAIL 13.660011 FAIL	0 0 Tie	-in to other Zone A areas	
🗉 🗹 Xsec	CORSER N										
		Record		Show: All	Selected Records (0 ou	t of 32 Selected.)	Options 🝷				
E M Asec	$F_{\rm M} = \mathcal{M} = \mathcal{M}$	3/2)5 7		\sim		- 0	S GAD	715hV2XI	~		
	BREAK ST	2	\rightarrow	$\mathcal{Q}_{\mathbf{A}}$		3777 8) abt			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\langle \langle \rangle$
-		ر ۱۱/۱	16	12	E 19			HENK	h = 1		
∃ ⊠ corr_glencoe_		$\left(A \right) = \left\{ A \right\}$		2 1		\mathcal{A} / / / ,	X	MAL MH	V Sa		5
⊟ 🛛 sat trib 82 r	LASS WW			.VA	\mathcal{O}	1 / TAN .	M CAN		(NUPTH)		1 N.
		1 LINTON		41	\wedge	XXXX///	1 1 ¥ 181		2014723		
🗉 🗆 stmarygrid	FESS AL	I AND AND	(Anton	A	$F \setminus X \setminus Y$	XX SX ///	\times	$\langle \langle \langle \rangle \rangle$	1 MARK	CHAMA	
Value	hill the last	DINAL	1XIIIV)	V D	V/B/	() Arres	()	\\\ ////	R	XI (YIF)	S
High : 28.3	HT VIN	PT//AT	\mathcal{H}		NAT	\mathcal{N}	///////	\ \ \ <i> / 🏸</i>	₩1		S
Low : 3.85		1/lald.	A XXXX /	3 VI	$\Lambda / X $	\mathbb{K}		.XXXI / / / / / / / / / / / / / /	// ()) (KH H	in ,
🗉 🗆 Grids	$P \sim M/$	///MCLIT			$\setminus \setminus / \Sigma$	(/ / /)	///////	\\\\ # /////////		IVIT GR	
🗉 🗹 unnmd80ç	n MP/	////////	7111/1	////	$\Delta M / Z / I$	M/////	///////				
🗉 🗹 unnmd78g	S / AH	(/)	$(\mathcal{A}^{(1)})$	$\langle / / /$	$\times K//$	() / / / / / / / / / / / / / / / / / / /					
⊞ ⊠ srtrib49gri ⊞ ⊠ sattrb84 3	S 15 11/K.	6-41 /	/ /I\ \ \ \	(///)	YO X /	$(\land \land \boxtimes$			11111		~~~~~
		ALLAN I	$(/) \wedge ()$	1/7	1 Jell	4 15	CH 1977	\mathcal{W}			nº m
🗉 🗹 glencoegri		PITANX /	/ / \ \ \	$(\land \land \land$	$\langle \langle \rangle \rangle$		1811 S	ALL I	\sim / \sim /		
⊞ 🗹 unmd88gr	\sim 11/~	/ LLh H I/RX /		\ h k				//LA) >~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< î		
		14/ VM/71		Val			$\setminus \bigcirc ($				
		$1 \mu m m$	<i></i>	NO Y	Here !	516		21			202
⊟ 🗆 c13039		$() \rightarrow \downarrow $	5-1	(\models)	18/2 V	\mathcal{O} $\mathcal{I}_{\mathcal{A}}$	TO S	λ κ		S	10
<	la some (VI JAN	d	~ \	~~~	$\{\} \land (C)$	\sim	MR OV	(ES	1000	
Display Source	N 25 C		U {	14	- 'S	12 2~	5-01		1112		5.
Selection Map Book							0 1 5 1 6				· · · · · ·
🛛 🖸 🗹 🐨 🖉 🖉 🗖											

Basic Steps for Zone A Audits

Pass 2 – Horizontal Tolerance

- Select the points failing Pass 1 and apply a 38 foot buffer
- Determine the minimum and maximum ground elevations within that buffer
- Determine whether the minimum and maximum ranges on either side of the floodplain overlap

Summary

Determine appropriate GIS steps

- Determine how to perform these steps using available ArcMap tools
- Automate steps to maximum extent
 possible using ModelBuilder

Questions?

