GISHYDRO: Developing Discharges and Watershed Parameters

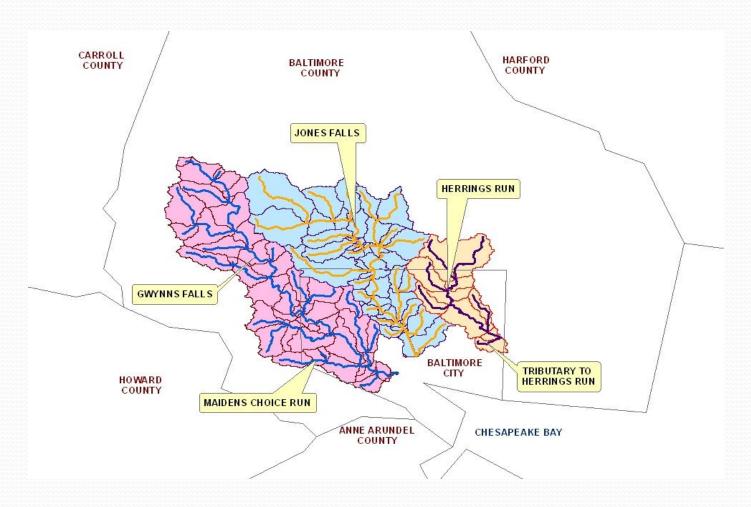
A Case Study with Baltimore City Watersheds

by

Mathini Sreetharan, Ph.D., P.E., CFM, Dewberry, VA Kim Dunn, P.E., CFM, Dewberry, PA

Baltimore City Watershed Study

- Conducted for City of Baltimore, MD
- Cooperating Technical Partner (CTP) agreement with FEMA
- H&H Analysis reviewed & approved by USACE



Scope

- The scope involved detailed H&H analysis of four major streams in the City and the remaining streams were studied by approximate analysis (Zone A)
 - Gywnns' Falls, including Maiden's Choice Run
 - Jones Falls
 - Herring Run & Tributary to Herring Run

Location of the Study Area

Choice of Hydrologic Methodology

HEC-HMS/ GISHYDRO

- Jones Falls
- Gwynns Falls (includes Maidens' Choice Run)

GISHydro Regression Equations

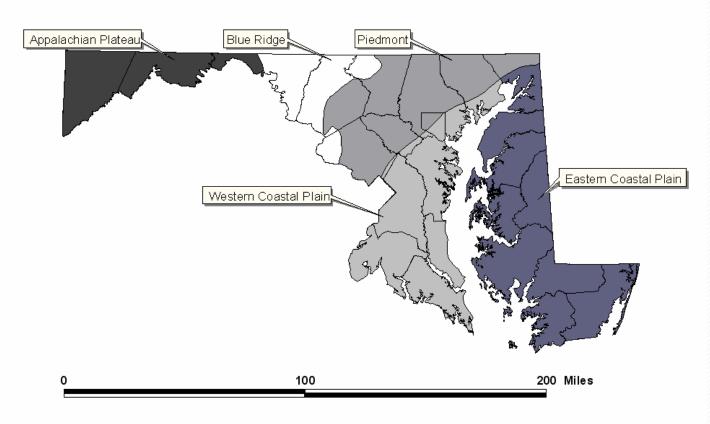
- Herring Run
- Tributary to Herring Run

GISHYDRO 2000

- A GIS-based program for performing hydrologic analysis
 - Developed by State Highway Administration in cooperation with UMD
- Arc-view based platform, and it consists of large database of hydrologic layers.
 - Complete databases for DEM, Land use, and soils data for Maryland.
 - Develops stream network, watershed boundaries
- Computes peak discharges
 - USGS regional regression equations
 - Fixed Region Equations
- TR-20 input data generation
 - Sub-basin development
 - Curve Number, Tc, reservoir/ reach routing

Herrings Run and Tributary

- Herring Run
 - Originates near Towson
 - Flows Southerly direction
 - Joins Black River and into Chesapeake Bay
- Tributary to Herrings' Run
 - Flows easterly direction
 - Less than 1 sq. mi.
 - Joins Herrings Run near mouth



Fixed Region Equations

- Developed by MD State Highway Administration in collaboration with University of Maryland
- Recommended for ungaged MD watersheds
- Supersedes 1996 USGS Equations
- Accepted for Flood Insurance Studies
- Applicable for Urban watersheds
- Five Hydrologic Regions: Appalachian Plateau, Blue Ridge, Piedmont, Western Coastal Plain, Eastern Coastal Plain

Hydrologic Regions

Source: GISHydro Manual

Herrings Run

- Piedmont Region
- Drainage Area
- Percentage imperviousness
- Discharges by GISHYDRO
 - Select the discharge locations
 - Watershed parameters and discharges computed
 - Time saved on collecting topographic and land use information

Herrings Run: Sample Output

```
frdischarges.txt - Notepad
                                                                  File Edit Format View Help
Fixed Region Peak Flow Estimates for:
GISHydro Release Version Date: January 22, 2007
Hydro Extension Version Date: September 4, 2006
Analysis Date:
                                 February 6, 2007
Geographic Province(s):
   -Piedmont (100.0% of area)
Q(1.25):
          996 cfs
Q(1.50):
Q(1.75):
          1340 cfs
          1530 cfs
Q(2):
           1650 cfs
Q(5);
           2930 cfs
Q(10):
Q(25):
           4050 cfs
           5830 cfs
Q(50):
           7460 cfs
Q(100):
           9400 cfs
Q(200):
           11700 cfs
Q(500):
           15300 cfs
Area Weighted Prediction Intervals (from Tasker)
             50 PERCENT
 Return
                                67 PERCENT
                                                    90 PERCENT
 Period
         lower
                   upper
                             lower
                                       upper
                                                 lower
                                                           upper
                                                                    1 οι
  1.25
          754
                    1320
                              667
                                        1490
                                                  490
                                                            2020
                                                                     4:
         1050
                    1720
                              939
                                        1920
                                                  713
                                                            2530
                                                                     6:
   1.5
  1.75
          1210
                    1950
                             1080
                                        2170
                                                  830
                                                            2830
                                                                     7:1
                                                                     7:
         1310
                    2100
                             1180
                                        2330
                                                 904
                                                            3030
                    3550
                             2210
                                        3870
                                                1780
                                                            4800
                                                                    161
         2410
    10
         3390
                    4840
                             3130
                                        5240
                                                 2570
                                                            6390
                                                                    23%
    25
          4890
                    6970
                             4520
                                        7530
                                                 3710
                                                            9170
                                                                    334
    50
                    9010
                                        9800
                                                           12100
         6180
                             5680
                                                 4610
                                                                    41!
   100
                                       12700
                                                 5520
                                                                    49:
         7630
                   11600
                             6960
                                                           16000
   200
         9240
                   14800
                             8330
                                       16400
                                                 6420
                                                           21300
                                                                    56:
   500
       11700
                   20200
                                       22800
                                                           31000
                            10300
                                                7600
                                                                    65:
Individual Province Tasker Analyses Follow:
 Flood frequency estimates for
 REGION: Piedmont Urban
 area=
            11.10:impervious area = 46.60 :skew=
                                                       0.58
 Return
            Discharge
                          Standard
                                          Equivalent
                                                            Standard
 Period
              (cfs)
                          Error of
                                           Years of
                                                            Error of
                                                            Prediction
                         Prediction
                                           Record
                          (percent)
                                                             (logs)
```


Watershed Modeling -GISHYDRO

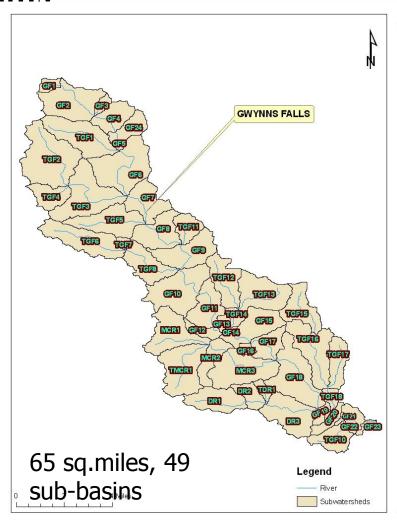
- GISHYDRO generates watershed parameters
 - Watershed and sub-basin boundaries
 - Drainage Areas, Time of concentration, and curve numbers, lag time.
 - Reach routing parameters suitable for TR-20.
 - Develops necessary input data for TR-20 model
- Data used in HEC-HMS model

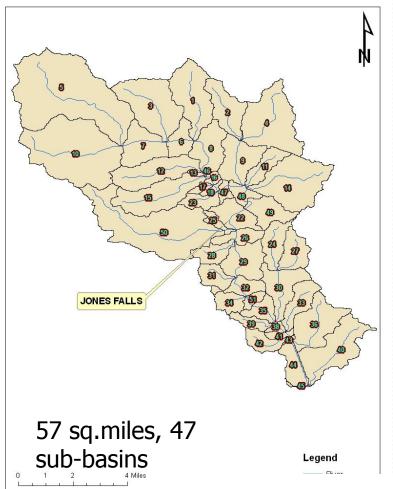
Jones Falls/ Gwynns Falls

- Watershed Development
- Parameter Development
- Developing HEC-HMS Input Dataset
- Calibrating the HEC-HMS model
- Developing Peak discharges

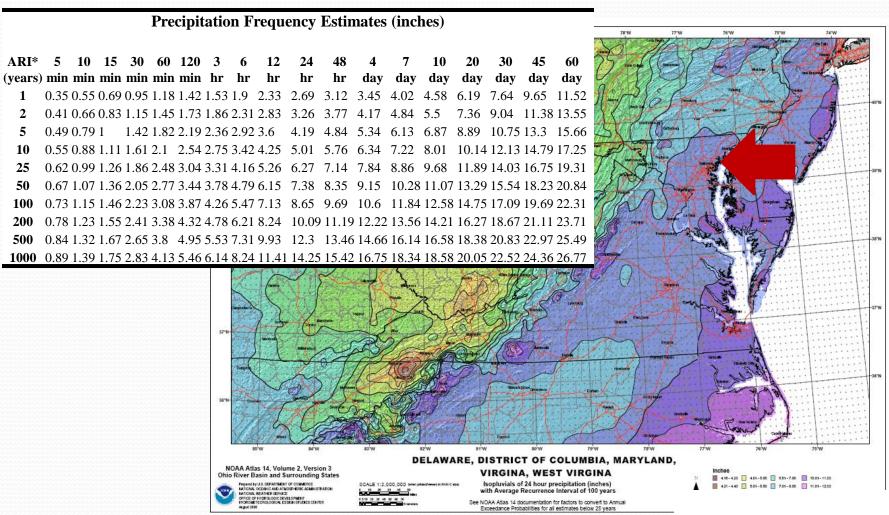
HEC-HMS Model Development

- Delineate Watershed and sub-basins using GISHYDRO
- GISHYDRO- Time of concentration, curve number, reach-routing parameters computed by GISHYDRO
- Watershed parameters incorporated into HEC-HMS dataset

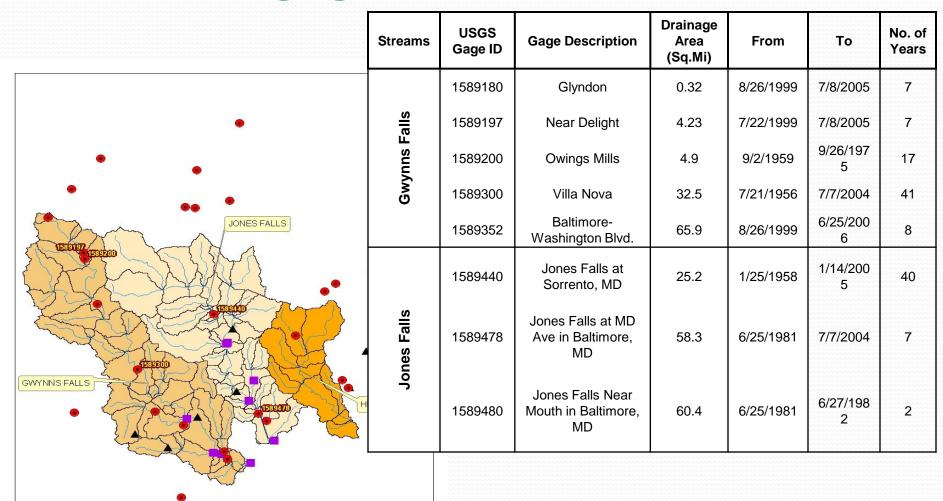

Parameters used in HMS


- Sub-basins
 - SCS Curve Number used as loss method
- Reaches connecting the junctions
 - Muskingum-Cunge reach routing used
 - Cross-sections from GIShydro
- Areas, curve numbers, initial abstraction, & impervious cover obtained from GISHYDRO

Subwatersheds –Gywnns Falls


Subwatersheds-Jones Falls

Rainfall from Atlas 14



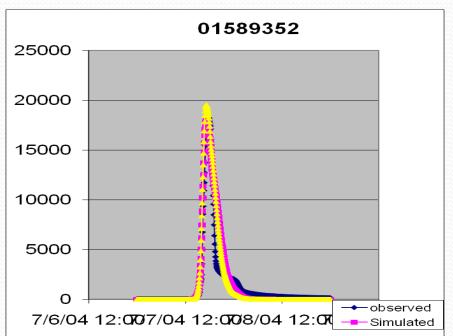
Frequencies

- Discharges were computed for 10,50, 100 and 500 yr flood events
- In addition, 2004 flood event was also used to check the results obtained

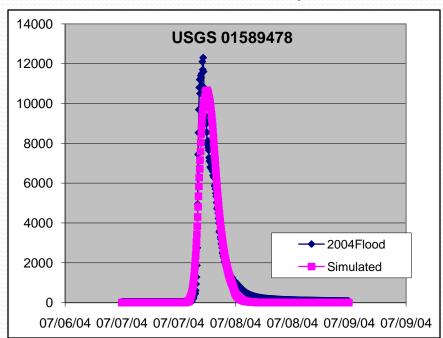
USGS gages used for Calibration

USGS Gages

FIS Discharge Change Location


Calibration for 2004 flood event

- Using the ppt recorded at the gages, simulated hydrograph was generated using the input parameters.
- Observed hydrograph was generated at gage locations using the gage records obtained from www.usgs.gov
- The simulated and observed hydrographs were plotted and compared against to check the simulated results



Results of calibration

Gywnns Falls USGS 01589352, At Washington Blvd

Jones Falls USGS 01589478, at Maryland Ave

Summary

GISHYDRO

- Includes Basic Datasets necessary for discharge development
- Fixed Regions Equations applicable to urban watersheds
- Ease of developing TR-20 model
- Watershed parameters can be transferred to other watershed models

Summary

- GIS HYDRO Wish List
 - Discharges computed one by one, Discharge locations taken from a shapefile and computations done at the same time.
 - Moving to Arc GIS platform would be useful.
 - Option to incorporate more recent data sets that those in-built in GISHYDRO

Questions??