Levees in the National Flood Insurance Program

David Preusch, P.E., CFM, D.WRE
Michael Baker Jr., Inc.
What is a Levee or Levee System?

• **44 CFR 59.1 Definitions** - *Levee* means a man-made structure, usually an earthen embankment, designed and constructed in accordance with sound engineering practices to contain, control, or divert the flow of water so as to provide protection from temporary flooding.
What is a Levee or Levee System?

• **44 CFR 59.1 Definitions- Levee System** means a flood protection system which consists of a levee, or levees, and associated structures, such as closure and drainage devices, which are constructed and operated in accordance with sound engineering practices.

Problem- didn’t explicitly mention **floodwalls**, sea walls, bulk heads, revetments, retaining walls.

OR FLOODWALLS ON TOP OF LEVEES
Floodwalls

17th Street Canal Floodwall on top of levee in New Orleans

Floodwall Breach - New Orleans
Consequences of a Levee/Floodwall Breach

City of New Orleans Flooded from Hurricane Katrina
Consequences of a Levee Breach

Sacramento-San Joaquin Delta, California
§65.10 Mapping of areas protected by levee systems.

(1) Freeboard *
(2) Closures *
(3) Embankment protection *
(4) Embankment and foundation stability *
(5) Settlement *
(6) Interior drainage *
(7) Operations plans
(8) Maintenance plans
(9) As-builts drawing of levee system *

* must be certified by a professional engineer
§65.10 (b) Design Criteria (1) Freeboard.

(1) Freeboard - Riverine

- 3 feet minimum above 100-year water level
- 4 feet within 100-feet of structures (bridges) with pier(s) or embankment(s) inside the levee
- 3.5 feet at the upstream end of levee
- Minimum of 2 feet if uncertainty associated with discharge, stage, debris, sediment, and ice is assessed
§65.10 (b) Design Criteria (1) Freeboard.

(1) Freeboard-Coastal

- 2 feet above the 100-year wave crest or wave runup, whichever is higher
- 2 feet minimum above the 100-year stillwater elevation if the effects of wave attack and overtopping on stability are assessed
(2) §65.10 (b) Design Criteria (2) Closures.

All openings must be provided with closures that are part of the levee system

(3) §65.10 (b) Design Criteria (3) Embankment protection.

Levee embankment protected from erosion from currents, waves, ice, and debris at various stages of flooding, and bends

(4) §65.10 (b) Design Criteria (4) Embankment and foundation stability.

Seepage will not jeopardize embankment or foundation stability. Corps EM 1110-2-1913 Design and Construction of Levees.
(5) §65.10 (b) Design Criteria (5) Settlement.
Settlement from consolidation of fill and embankment loads must not result in inadequate freeboard. Corps EM 1110-2-1904 Soil Mechanics Design- Settlement Analysis.

(6) §65.10 (b) Design Criteria (6) Interior drainage.
Based on joint probability of river side and interior flooding, any residual flooding > 1-foot deep must be shown. This includes assessing the capacity of channels, pipes, and pumps.
§65.10 (c) Operation plans.

Closure structures and mechanical systems (e.g., pumps, gates), either manual or automatic, must have an operation manual that includes:

1. Flood warning system with sufficient warning time to implement operations
2. Assignment of responsibilities
3. Manual backup
4. Periodic inspections and operations (< 1-yr intervals)
5. Backup power source (other criteria)
Levee system must be maintained to ensure its stability, height and overall integrity. Maintenance plan must specify:

1. Maintenance activities (implies inspections)
2. Frequency of maintenance (no min. interval specified)
3. Responsible party for each activity
FEMA Levee Policy Review Committee, Sept. 2006

FEMA
Corps of Engineers
USGS
NRCS
NOAA
BuRec
ASFPM
NAFSMA
Baker (NSP)
Dewberry
Post Buckley

Chaired by:
Gerry Galloway and Kelly Bronowicz
Recommendations:

1. Better public awareness of residual risk behind levee and floodwall systems
 - new XL Zone behind all levees
 - notification letters once a year

2. Require annual inspections

3. Require reporting to FEMA on inspections, operations, maintenance, and performance every 2 years

4. Recertification every 10 years
Recommendations:

6. Specifically exclude embankments not designed as levees (e.g. roadway, railroad, spoil banks)

7. Require emergency actions plans for design exceedance required for certification

8. Require higher level of protection for highly urbanized areas (500- or 1,000-year)

9. Phase-in risk and uncertainty analysis instead of freeboard approach, phased in over 10 years
Risk and Uncertainty in Riverine Conditions

Monte Carlo Simulation

Discharge Probability Distribution Developed Separately

Stage Probability Distribution Developed Separately

Equivalent “freeboard”

90% or 95% Mean

Account for H&H Uncertainty in Discharge and Water Surface Elevation
Risk and Uncertainty in Riverine Conditions

Discharge Frequency

Figure 12-1
Frequency Curves for Fishkill Creek at Beacon, New York
Example 1

Risk and Uncertainty in Riverine Conditions

Step 1

Pull out Q_1 ball

Discharge Probability Distribution Developed Separately
Risk and Uncertainty in Riverine Conditions

Step 1

Step 2
Risk and Uncertainty in Riverine Conditions

Monte Carlo Simulation

Put El.₁ ball in 3ʳᵈ bin. Do Steps 1 and 2 10,000 times or more

Step 1
Step 2
Step 3
Risk and Uncertainty in Riverine Conditions

Monte Carlo Simulation

Box filled with elevations

Conditional Probability Distribution
Risk and Uncertainty in Riverine Conditions

Monte Carlo Simulation

90% or 95% Assurance
or
Conditional Non-Exceedance Probability (CNP)
Risk and Uncertainty in Riverine Conditions

Monte Carlo Simulation

90% or 95% Assurance

or

Conditional Non-Exceedance Probability (CNP)
Uncertainties to be incorporated in the future once the technologies are more mature

1. Geotechnical
2. Structural
3. Mechanical/Electrical (Pumps)
4. Operation and Maintenance
Additional References to be added to §65.10

- COE ETL1110-2-570 on “Certification of Levee Systems for the National Flood Insurance Program (NFIP)"
- COE EM 1110-2-1619 “Risk-based Analysis for Flood Damage Reduction Studies
- COE ER 1110-2-101 “Risk Analysis for Flood Damage Reduction Studies”
- COE EM 1110-2-1901 “Seepage Analysis and Control for Dams
- COE EM 1100–1–1904 “Settlement Analysis”
- COE EM 1110-2-2502 “Retaining and Flood Walls”
- COE EM 1110-1-1905 “Bearing Capacity”
- COE EM 1110-2-1413 “Hydrologic Analysis of Interior Areas”
- COE EM 1110-2-2902 “Conduits, Pipes and Culvert”
- COE EM 1110-2-2705 “Structural Design of Closure Structures for Local Flood Protection Projects”
- COE EM 1110-2-3102 “General Principles of Pumping Station Design and Layout”
- COE EM 1110-2-3105, “Mechanical and Electrical Design of Pumping Stations”
- COE EM 1110-2-301 “Landscape Planting and Vegetation Management for Floodwalls, Levees and Dams.”
- COE “Levee Owners Manual for Non-Federal Flood Control Works”
Additional References to be added to §65.10

- COE ETL1110-2-570 on “Certification of Levee Systems for the National Flood Insurance Program (NFIP)”
- COE EM 1110-2-1619 “Risk-based Analysis for Flood Damage Reduction Studies”
- COE ER 1110-2-101 “Risk Analysis for Flood Damage Reduction Studies”
- COE EM 1110-2-1901 “Seepage Analysis and Control for Dams”
- COE EM 1100–1–1904 “Settlement Analysis”
- COE EM 1110-2-2502 “Retaining and Flood Walls”
- COE EM 1110-1-1905 “Bearing Capacity”
- COE EM 1110-2-1413 “Hydrologic Analysis of Interior Areas”
- COE EM 1110-2-2902 “Conduits, Pipes and Culvert”
- COE EM 1110-2-2705 “Structural Design of Closure Structures for Local Flood Protection Projects”
- COE EM 1110-2-3102 “General Principles of Pumping Station Design and Layout”
- COE EM 1110-2-3105, “Mechanical and Electrical Design of Pumping Stations”
- COE EM 1110-2-301 “Landscape Planting and Vegetation Management for Floodwalls, Levees and Dams.”
- COE “Levee Owners Manual for Non-Federal Flood Control Works”
a. Vegetation- and root-free zones

Interim Guidance for Studies Including Levees

08/22/2005
Other Recent Actions

Procedural Memorandum 43- Guidance for identifying Provisionally Accredited Levees (PAL) Sept 2006

• For levees previously accredited, allows 24 months for community/levee owner to submit Section 65.10 data and documentation before FEMA de-accredits levee

• FEMA issues preliminary and effective DFIRMs with Zone X designation and PAL note

• Allows an additional “maintenance deficiency correction period” for PL 84-99 levees
Zone A99

§61.12 (b) Flood Protection Involving Federal Funds

For levee system under construction with Federal funding and adequate progress towards completion

1. Adequate completion is:
 • 100% authorized
 • 60% appropriated
 • 50% expended
 • 50% complete of all critical features (cost based)

2. Mandatory flood insurance applies

3. Insurance rates are Zone X

4. No structural elevation required
Other Levee Related Regulations

Zone AR

§60.3 (f)(3-7)

For levee systems under restoration that were previously accredited but de-accredited by a new study

• Must involve Federal funding and strict time tables

• Must protect against the 3% chance flood (33-year)

• Mandatory flood insurance applies

• Insurance rates are Approximate Zone A (max)

• Allows for some relief in structure elevation for new construction (3-foot minimum typically)

• Zone AR can be converted to Zone A99 when A99 requirements are met for additional relief
Great Books on Levees:

2. “Battling the Inland Sea” by Robert Kelley, 1998, about the history of flooding and levee building in the Sacramento Valley (Sacramento, Feather, Yuba, and American Rivers) since 1850 and the flood of 1986
Questions ????

David Preusch, PE, CFM, D.WRE
Michael Baker Jr., Inc.
Alexandria, Virginia
(703) 317-6252
dpreusch@mbakercorp.com