It's Never the Same Watershed Twice... Using GIS Technology Responsibly With Engineering Judgment

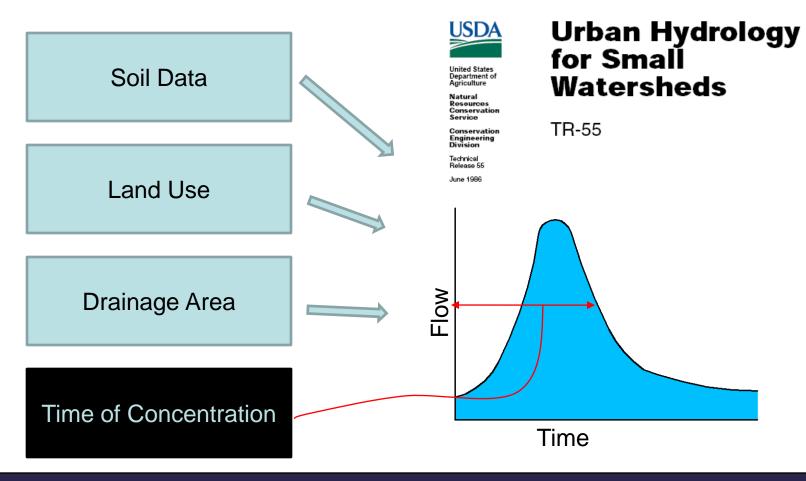
From the Mountains to the Coast Floodplain and Stormwater Management in Maryland

Ray Yost, CFM

Agenda

1. NRCS Method and Its Role in Stormwater

2. Calculating the CN with ArcGIS Applications

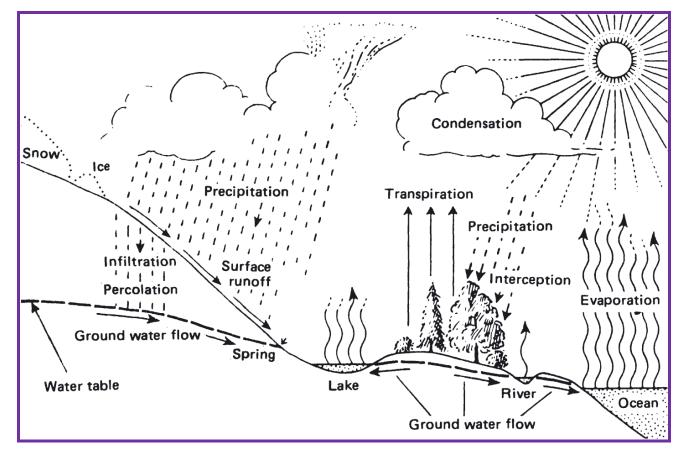

3. Calculating TC with GIS-based Applications

4. Professional Judgment

5. Examples

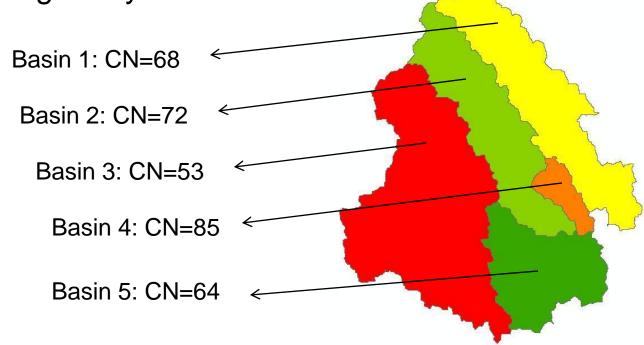
6. Conclusions

CN Method and its role in Stormwater



CN Method and its role in Stormwater

- Predevelopment
 CN = 58
 - Low runoff potential
- Postdevelopment
 CN = 85
 - High runoff potential


CN Method and its role in Stormwater

Source: http://www.wahyd.tu-berlin.de/content/mitarbeiter/tbusse/eigener_bereich/projects/hsm/hsm-en.html

CN Method and its role in Stormwater

ArcGIS Model Builder can be used to create a tool that will do the curve number calculations for a watershed containing many sub-basins.

Why Automated Geoprocessing?

- <u>Ease</u> The curve number calculation can be tedious and labor intensive when done manually.
- <u>Efficiency</u> The model is pre-programmed with the correct types of fields to create, and the specific calculations to be performed on those fields.
- <u>Data management</u> Models use scratch workspaces, which allow for automatic management of intermediate datasets.

OID

Soil LU

CN

81.48

50.8

72

39

30

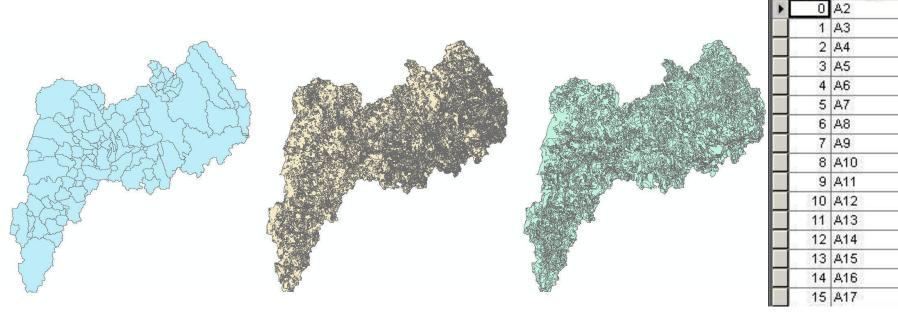
39

39

39

30 30

30


30

30 30

30

72.04

Required Data

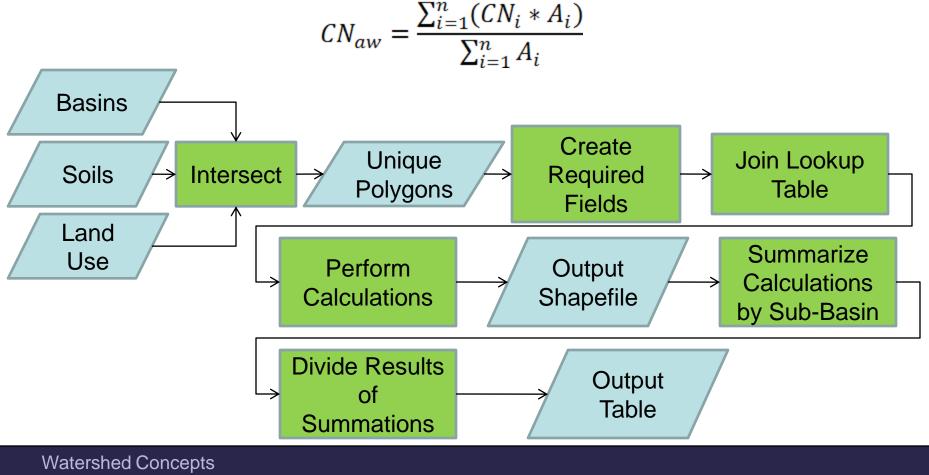
Basin Shapefile (Obtained from USGS StreamStats) Land Use Shapefile (Obtained from USGS Seamless) Soil Shapefile (Obtained from NRCS Soil Data Mart) Lookup Table (May be Customized By User)

Data Preparation

Basins

- Each sub-basin must be attributed with a unique identifier to distinguish it from the others.
- Soils
 - An "HSG" field is provided in the SURRGO Microsoft Access database.
- Land Use
 - Each area must contain a value corresponding to a land use type, such as NLCD gridcodes.

Customizing the Lookup Table


Table 9–1Runoff curve numbers for agricultural lands $\frac{1}{2}$ — Continued

Co	Cover description			CN for hydrologic soil group			
covertype	treatment ^{2/}	hydrologic condition $\underline{3}'$	A	B	C	D	
Pasture, grassland, or range-		Poor	68	79	86	89	
continuous forage for		Fair	49	69	79	84	
grazing ^{4/}		Good	39	61	74	80	
Meadow-continuous grass, protected from grazing and generally mowed for hay		Good	30	58	71	78	
Brush-brush-forbs-grass mixture with brush the		Poor Fair	48 35	67 56	77 70	83 77	
major element $\frac{5}{2}$		Good	30 €⁄	48	65	73	
Woods-grass combination		Poor	57	73	82	86	
(orchard or tree farm) \mathcal{I}		Fair	43	65	76	82	
27 J		Good	32	58	72	79	
http://directives.sc.edov.usda.dov/med	ia/pdf/H 210 630 0 pdf						

http://directives.sc.egov.usda.gov/media/pdf/H_210_630_9.pdf

Calculation Process

ArcGIS Model Builder can be used to string together geoprocessing tools that mimic the curve number calculation for a basin.

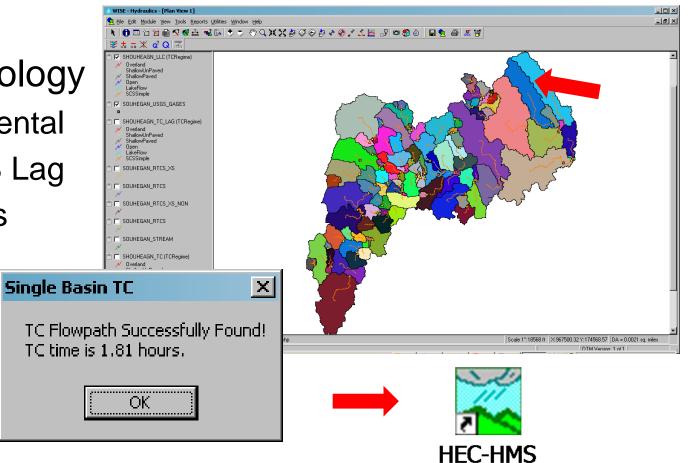
A Division of HSMM

Results

Shapefile Results

Basin_ID	Area	Land_Use	HSG	Soil_LU	CN	Area_CN
BASIN48	8585.67	9	В	B9	61	523725.87
BASIN48	19122.24	5	С	C5	74	1415045.76
BASIN48	38976.69	5	В	B5	61	2377578.09
BASIN48	9683.16	11	С	C11	71	687504.36

Table Results


Basin_ID	FREQUENCY	SUM_Area	SUM_Area_C	Basin_CN
BASIN10	131	2957499.98	200463957.98	68
BASIN100	194	7582499.95	535815663.03	71
BASIN101	6236	165017500.36	9529834932.36	58
BASIN102	252	5989999.99	444240095.20	74

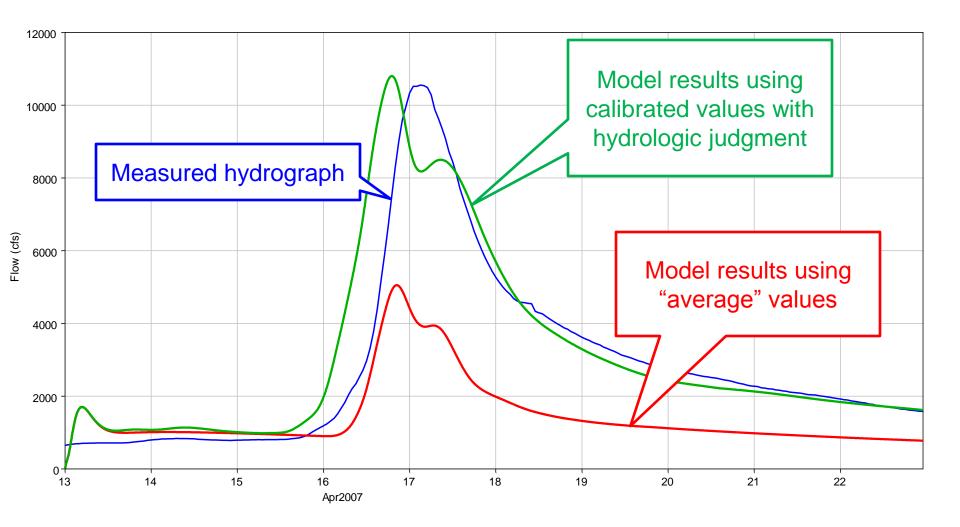
Time of Concentration

- 🗆 × jle Edit Module View Tools Reports Utilities Window Help - 8 × SHOUHEAGN_LI 🔁 Time of Concentration Criteria Methodology х Overland ShallowUnPave ShallowPaved General TC Options Open Channel Curve Numbers Open LakeFlow SESSimple Source Data Select TC Method Landuse SOUHEGAN_US Segmental SHOUHEAGN_T Overland ShallowUnPave ShallowPaved Automatic TC Optimization Open LakeFlow SCSSimple C Find Longest TC using maximum flowlength **NRCS** Lag SOUHEGAN RT Find Longest TC using maximum time SOUHEGAN_R1 Select Automated TC Methodology SOUHEGAN RT Others SCS TR-55 SOUHEGAN RT SCS Simple Method Izzard Kerby Length Kirpich Length feet inches SCS TR-55 SCS Simple Method A = 0.0021 sq. miles of 1 Izzard in/hr Kerby Kirpich 0K <u>Cancel</u> feet

Time of Concentration

- Methodology
 - Segmental
 - NRCS Lag
 - Others

Professional Judgment


http://www.medway.gov.uk/print/flooding.jpg

Watershed Concepts A Division of HSMM It is important to note that the default curve number values are not always appropriate for every situation.

These types of tools are useful in performing calculations, but careful judgment must be used by the end user.

Cold weather example: April 2007

- Souhegan River Basin, New Hampshire
- Long periods of small rainfall amount prior to storm
- 3.3" of rainfall over 24 hour period (2 year event)
- Peak discharge of 10,550 cfs (~50 year event)

Conclusions

- Automated geoprocessing tools are valuable for eliminating redundant and tedious calculations.
- Widely available datasets, combined with these automated tools, make it relatively quick and easy to get first order estimates.
- Tools such as these can serve as an aid, but areas remain where professional judgment should not be hidden by automation.