Integrating HEC HMS generated flow hydrographs with FLO-2D

Nanda Meduri, PE, PMP, CFM
Seth Lawler
Venkata Dinakar Nimmala, CFM
Focus of this Presentation

• Introduction
• Methodology
• Challenges & Solutions
• Cost Effectiveness
• Conclusion
• Q & A
Introduction

• Study Area – New Jersey
 • 420 Sq. Mi., 320 miles of study scope
 • Northern portion of study area - Moderate to Steep slope
 • Southern portion – Flat terrain
 • 2D model proposed to accommodate wide floodplains
 • 3 HMS models and 20 FLO-2D models

• Selection of Hydrology Method
 • Regression Analysis
 • Constant Hydrograph
 • FLO-2D
 • Rain on Grid approach - Not approved for Hydrology by FEMA yet.
Introduction

• Selection of Hydrology Method
 • Rainfall –Runoff Model
 • Adequately produces stream flow hydrographs that represent the physical characteristics of the watershed
 • Applicable in the areas of significant floodplain storage
 • Used HEC-HMS version 4.0
 • Subbasin flow hydrographs
Methodology

- **Hydrology**
 - Watershed Delineation
 - Streams with moderate to steep slopes – USGS 10m DEM
 - Flat Streams – 2 m LiDAR
 - Precipitation
 - Frequency Storm method – NOAA Atlas 14
 - Infiltration/Loss Method
 - Curve Number from SSURGO and 2011 NLCD dataset
 - Lag Time
 - Watershed Lag method
Methodology

• Hydrology
 • Channel Routing
 • Attained through FLO-2D
 • Comparison
 • Regression Equation Discharges – Headwater Basins
 • Discharges
 • Hydrographs for each sub basin generated
Methodology

- Hydraulics
 - FLO-2D
 - Volume conservation flood routing model
 - Routes rainfall-runoff and flood hydrographs over unconfined flow surfaces or in channels
 - Governing equations are the continuity equation and the equation of motion
 - Moves blocks of volume around on the grid system in eight directions

Integrating HEC HMS generated flow hydrographs with FLO-2D October 15, 2015
Methodology

• Hydraulics
 • FLO-2D
 • Grid Developer System (GDS)
 • Pre-processor program –
 Overlays the grid system on the
 DTM points, interpolates and
 assign elevations to the grid
 elements
 • Roughness, Inflow & Outflow
 nodes, Area and width reduction
 factors.
 • Prepares the basic input files for
 the FLO-2D model
 • Grid Element Size of 50 feet –
 100 feet
Methodology

• Hydraulics
 • FLO2D
 • MAPPER
 • Primary program for displaying results
 • Creates Ground Elevation, & Water Surface Elevation and Flood Depth maps
 • Creates an approximate Area of Inundation layer
 • Floodplain Delineation based on detailed topo data – ArcGIS methods work best
1) Challenge

Grid Developer System – Long

Loading times due to detailed topo data and roughness data

Solution

- Used the 100 feet grid from GDS in ArcGIS
 - Extracted elevation and manning’s n values using Zonal Statistics
- Used ‘R’ (a programming language) scripts to write the elevation & manning’s n values into FPLAIN.DAT file, an input file for FLO-2D
2) **Challenge**

Inflow nodes – Laborious process to get the outflow hydrograph from HEC-HMS and input into the GDS – more than 600 flow change locations

Solution

- Used HEC-DSSVue to export all the hydrographs into a spreadsheet.
- Linked the flow change points spatial file and grid spatial file.
- Used ‘R’ scripts to extract specific hydrographs for each point and write them into INFLOW.DAT file.
3) Challenge

Handoff Points – To reduce computation times, study area was divided into multiple models – Outflow hydrograph of U/S becomes inflow hydrograph of D/S model

Solution

- FPXSEC.DAT identifies grid cells where the user wants flow computations
- Read the CROSSQ.OUT (output files) from the U/S model run – Identify grid cells that are intersecting from D/S model
- Used ‘R’ scripts to extract specific hydrographs for each grid cell and write them into INFLOW.DAT file for the D/S model
4) Challenge

Floodplain Mapping – Extremely time consuming in FLO-2D to delineate floodplain based on high resolution LiDAR data. Example: 5 feet LiDAR based raster

Solution

• Used ArcGIS to develop the work flow to delineate floodplains.
• Flood Depth at each grid cell is used
• Model builder is to used to reduce any redundancies
Cost Effectiveness

• Cost/Time matched the 1-D HECRAS approach.

• Cost includes learning time, overcoming challenges (script development)

• Next application of this method (HEC-HMS/FLO-D) – 75% of the 1-D HECRAS approach.
Conclusion

• Integrating HEC-HMS results into FLO-2D is a challenging process, if FLO-2D’s GUI (2009 version) is solely used

• Process Improvements such as R scripts to reduce computation times do help.

• Rain-on-Grid approach i.e., generating the flood hydrograph at a specific location by modeling the rainfall-runoff in FLO-2D might be an approach that needs consideration

• With HEC-RAS 2D on the horizon, it needs to be seen how cost effective FLO-2D can still be.
Questions?