Urban Floodplain modeling-Application of Two-Dimensional Analyses to Refine Results

0

Prabharanjani Madduri, P.E., CFM

Mathini Sreetharan, Ph.D., P.E., CFM

Hydraulic modeling of urban areas and issues

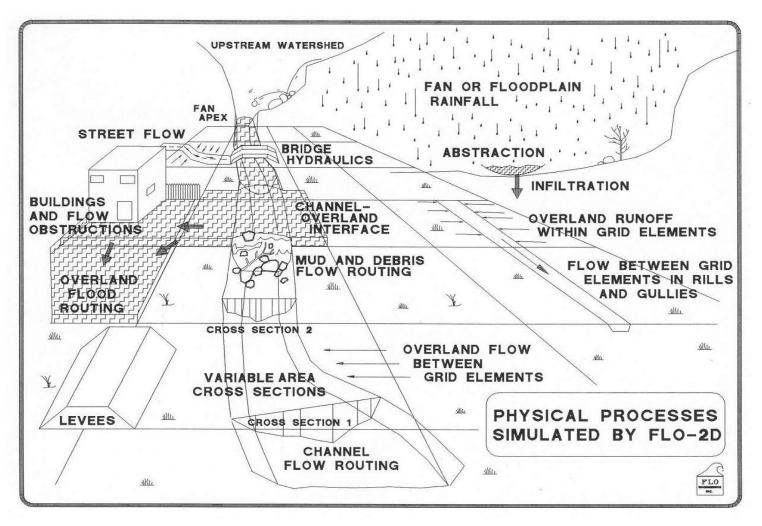
- Modeling of urban areas present complex challenges than those for rural areas
- Most of the developed areas are along the border of water courses
- Require consideration of built up areas, highly varying land use, narrow flow paths, underground storm water drainage.
- With the overbanks developed with roads and buildings, urban areas generally exhibit flat topography
- When the flow overtops the channel into overbanks, the flow finds its own flow paths to reach the ocean.
- In some cases the overbank floodplain may be disconnected from the channel flow/ can exhibit flow exchange.

Why Two-dimensional Models to model urban areas

- When topography is flat and direction of the overbank flow paths distinctly differ from the channel direction the flow is two-dimensional
- Improves the accuracy of final floodplains and floodways computed
- RMA-2, FESWMS, FLO-2D, MIKE Flood; others
- Increasing interest and use
- Better data, and quality

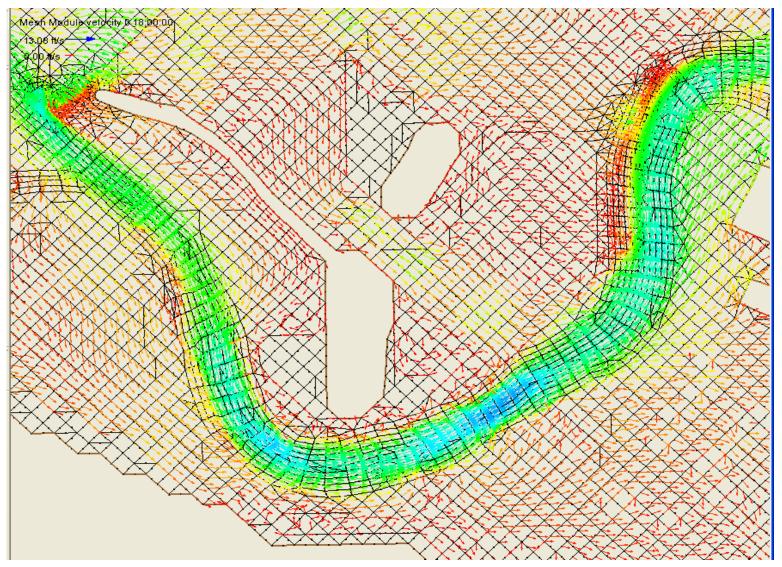
Governing Equations

- Equations of Motion
 - Depth-Averaged Equations Of Motion
 - Conservation of Mass continuity
 - Conservation of momentum in two horizontal directions
- Solution Method
 - Finite difference Solution
 2-D grid is used to represent the topography FLO-2D, MIKE-21
 - Finite element solution
 Irregular finite element mesh to represent topography
 RMA-2V, FESWMS, MIKE-21, XP-SWMM-2D



- Boundary Conditions
 - Steady Flow
 - Constant discharge applied
 - Unsteady Flow
 Discharge varies with time
 Hydrograph is applied
- Calibration
 - Calibration of the model is recommended
 - If the flow is 2d, then an uncalibrated 2d model represents the flow patterns better than a 1 d model.
- Interpreting Results
 - FD solution: Flow parameters computed at center of grid FE solution: Flow parameters computed at nodes of elements

Physical Processes simulated in a 2D model



Advantages of 2 D simulation

- Accounts for transverse components, using depth average equations of motion
- Flow paths can be identified by flow velocities, flow rate and volume computed in the grid.
- Simulation of the hydraulic interactions between the channel and floodplain (2d/1d models)
- Ability to employ fine model resolution near critical floodplain features (FEM models)
- Improved analysis of floodplain and overbank flows through a better definition of physical situations
- Easier to develop other Risk MAP products like depth & velocity grids

Velocity Vectors to define flow paths

Disadvantages

• Loss of channel definition

1-d embedded solution(Flo 2d, XP, DHI)

- More advanced data requirements
- Direction of split flows and magnitudes have to be determined
- Difficulty in data integration
- Longer computation times
- Expensive both in terms gathering data and final output

Alternate solutions

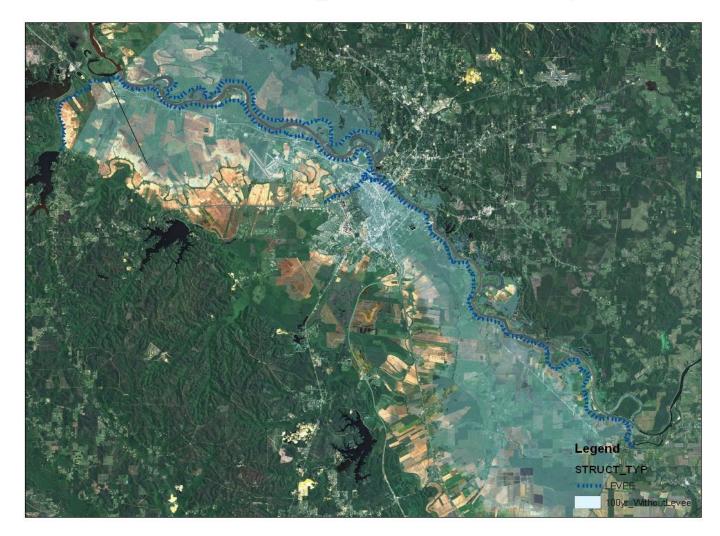
- Alternatively, steady flow one-dimensional solution can be developed with the aid of a steady flow two dimensional analysis, where the two-dimensional model results are used in identifying the major flow paths within the floodplain.
- Applicable in split flow conditions

Current NFIP Guidance


- Appendix C: Riverine Flooding Analysis and Mapping
 C.3.3.3:
- Appendix E: Shallow Flooding Analysis and Mapping
 - Flood zones
 - E.4: Ponding (AH) versus sheet runoff (AO)
 - E.5.3: Sheet runoff
 - "...average of all the average flow depths at all cross sections with a selected reach length..."
 - E.5.: "...where the slope of the water surface is extremely low and uniform BFEs can be established for large land areas, Zone AH with a BFE is preferred."

Issues in the FW model

- Due to very narrow and split flow channels the FW are usually very wide.
- The use of ineffective flow areas on the overbanks increase the base flood elevations in the vicinity.
- Usually the flooding due to the split flows the depth is usually in between I-3ft (AO zone)
- Some times in many areas due to the flat topography and wide floodplains, the areas are modeled as Zone A's



Rio Grande De Loiza, PR

Red River, Rapids County, LA

Conclusions

- Where ever the flow is two- dimensional, 2 d analysis gives better results
- If effective is a 2d study, new analysis should also be 2d
- Can be cost effective
- Can be used to refine the Id results for sensitive areas.
- Calibration is highly recommended for the models

