RECTIFYING APPROXIMATE STUDY HYDRAULIC MODELS

PBS

Presented by: Laura M. Rightler, P.E, CFM Paramjit Chibber, P.E, CFM

Overview:

- Definitions; Level of study
- Why rectify Zone A hydraulic models?
- Methods used to rectify hydraulic models
 - Hydraulic Calibration
 - Channel Modification
 - Arc GIS
 - HECRAS
- Conclusion: Pros & Cons

Level of study:

	ZO	NEA	ZONE AE
	Approximate Study	Limited Detailed Study	Detailed Study
Manning's "n"	Generalized	Generalized and calibrated	Determined from site
			reconnaissance
Structures	Estimated from	Estimated from	Surveyed
	topographic data and/or	topographic data,	
	established from published	established from published	
	sources	sources, observed from	
		field	
Hydraulic Cross	Sampled from topographic	Sampled from topographic	Surveyed at specified
Sections	data	data, supplemented with	spacing and location.
		field survey	
Channel	Estimated from	Determined from	Stream centerline and
	topographic data	topographic data and	bank stations are surveyed
		calibrated for bathymetric	
		data	
Boundary	Downstream condition:	Downstream condition:	Downstream, upstream
Conditions	Normal depth, known	Normal depth, known	and intermediate boundary
	water surface elevations	water surface elevations	conditions specified
			depending on model used.
Floodplains	Delineated	Delineated	Delineated/ redelineated
			/digitized
Floodway	Undefined	Undefined	Defined, tabulated in FDT
BFEs	Not determined	Available to community	Published in FIS and DFIRM

Level of Study Chart

PBS

Why rectify Zone A Models?

- Availability of new topographic data that is of higher accuracy and resolution
- Upgrades to hydraulic modeling techniques and software
- Physical and hydrologic changes to the watershed resulting in different discharge-frequency relations
- Redefinition of FEMA products to better meet community needs.

Historically, FEMA has produced flood maps and flood insurance studies for communities designated by political boundaries and jurisdictions. Hence, a single flooding source may be depicted in several maps with varying levels of study both along and across its reach length.

Why rectify Zone A Models?

The Mississippi river watershed is a good example of how this may present mapping challenges.

PBS

Why rectify Zone A Models?

145

Assumptions:

 Calibration of the hydrologic model if required has been completed. Performed by modeling major historic events/storms where <u>rainfall</u> and <u>outflow data</u> records are available, and comparing it to hydrologic model data.
 Parameters can then be adjusted and results checked against observed values.

PB

Assumptions:

 Hydraulic models discussed here are limited to <u>one-dimensional steady flow models</u>. The models represent a well defined channel with constant flow properties over time, with no reverse or multi-directional flow.

PE

Hydraulic Calibration

- Adjusting hydraulic input variables by comparison of model results with historic floods where <u>flood flow</u> and <u>elevation data</u> is known.
- The Manning "n" is more commonly the variable used to calibrate models.

PB

Hydraulic Calibration

Prior to modifying the Manning's "n" confirm that:

Structure data is input correctly

National Bridge Inventory (NBI)_GIS data Federal Highway Administration (FHWA) _ Technical Guidelines

Data available from the state or community Energy loss coefficients are determined

Hydraulic Calibration

	Bridges	Subcritical Flow Contraction and	Expansion Coeffic	cients
Parameter	Parameter Assumption			
Deck Thickness	3.5		Contraction	E
Width	Approximate from Aerial Imagery			
	Approximate as 90% of approximated Aerial	No transition loss computed	0.0	0
Pier Opening Width	opening width	Gradual transitions	0.1	0
Minimum Ground Elevation	*	Graduar transfitions	0.1	0
		Typical Bridge sections	0.3	0

Expansion

0.0 0.3 0.5

0.8

0.6

Abrupt transitions

Culverts				
Parameter	Assumption			
Minimum Ground Elevation	*			
Invert Elevations	Approximate from Topographic data			
FHWA HDS-5 chart number	1 for circular/elliptical, 10 for box or rectangular			
Nomograph Scale	1			
	Estimated from HDS-5, Appendix D, Page 223,			
Entrance loss coefficient	Table 12			
Mannings n	0.014 for concrete, 0.016 for steel			

*Minimum ground elevation determined from spot elevation data provided by the State. If no data is available it is approximated as one half the contour interval above the lowest contour at the structure, or bridge elevation shown on quadrangle map.

PE

Hydraulic Calibration

PK

Hydraulic Calibration

Manning's "n": categories:

- A-Natural Streams, applicable for most floodplain studies,
- B-Lined or Built-Up Channels, applicable for many manmade channels and storm water management projects and,
- C-Excavated or Dredged Channels often used with navigable waters improvement projects.

145

Hydraulic Calibration

Manning's "n" & conveyance are related by the equation below:

- where: K = conveyance for subdivision
 - n = Manning's roughness coefficient for subdivision
 - A = flow area for subdivision
 - R = hydraulic radius for subdivision (area / wetted perimeter)

Hydraulic Calibration

Adjusting Manning's "n" and roughness coefficients in HECRAS

Reach	(175	All Regions	→ a lig bao	ht green :kground	
Selec	cted Area Edit Options	_ ,	,		
Ad	d Constant Multiply Fa	ctor Set Values	Replace Reduce	to L Ch R	
	River Station	Frctn (n/K)	n #1	n #2	n #3
11	/01495.9	n	0.05	0.03	0.05
2 1	/01105.3	n	0.05	0.03	0.05
3 1	/00265.5	n	0.05	0.03	0.05
4 9	39764.39	n	0.05	0.03	0.05
5 9	39258.51	n	0.05	0.03	0.05
6 9	38751.86	n	0.05	0.03	0.05
7 9	38232.7	n	0.05	0.03	0.05
8 9	37724.42	n	0.05	0.03	0.05
9 9	37247.51	n	0.05	0.03	0.05
10 9	36705.32	n	0.05	0.03	0.05
11 9	36296.93	n	0.05	0.03	0.05
12 9	35763.68	n	0.05	0.03	0.05
13 9	35263.31	n	0.05	0.03	0.05
14 9	34765.84	n	0.05	0.03	0.05
15 9	34305.24	n	0.05	0.03	0.05
16 9	33775.18	n	0.05	0.03	0.05
17 9	33261.45	n	0.05	0.03	0.05
18 9	32764.35	n	0.05	0.03	0.05
19 9	32389.97	n	0.05	0.03	0.05
20 9	31928.63	n	0.05	0.03	0.05
21 9	31338.87	n	0.05	0.03	0.05
22 9	31013.01	n	0.05	0.03	0.05
23 9	30716.17	n	0.05	0.03	0.05
24 9	30282.13	n	0.05	0.03	0.05
25 8	39763.73	n	0.05	0.03	0.05
26 8	39262.89	n	0.05	0.03	0.05
27 8	38764.05	n	0.05	0.03	0.05
28 8	38256.52	n	0.05	0.03	0.05
29 8	37729.17	n	0.05	0.03	0.05
30 8	37222.76	n	0.05	0.03	0.05
31 8	36379.26	n	0.05	0.03	0.05
32 8	35576.72	n	0.05	0.03	0.05
33 8	35213.77	n	0.05	0.03	0.05
34 8	84708 27	1	0.05	0.03	0.05

145

🔨 Geometric Data - uppermississippi									
File Edit Options Vie	w Tables	Tools	GIS Tools	Help					
Tools River Reach Area Area Junct. Cross Section Brdg/Culv Inline Structure Lateral Structure	Man Rea Con On Mino Ban Leve Ice Nam Pictu Inef Bridy Weii HTa Line	hing's n o ch Length traction \E traction \E traction \E traction \E Stations es Stations es Cover es fective File se Width and Gate o Internal ar Routing	r k values s xpansion (xpansion (xpansion (ssociations ow Area El Table e Coeff Tal Boundarie g Coefficier	(Horizontally varied) Coefficients (Steady Flow) Coefficients (Unsteady Flow) evations evations es Table nts					

Hydraulic Calibration

The figures illustrate the effects of varying the Manning's "n" along a sample river reach on the water surface elevation and conveyance.

The average difference in water surface elevation when the Manning's is increased from 0.03 to 0.05 and 0.06 was 3.33-ft and 4.76-ft respectively. For conveyance the corresponding reduction observed was 142842-cfs and 198625cfs.

PB

Channel Modification

Applied where:

- Digital Elevation Models (DEMs) were developed from Light Detection and Ranging (LiDAR)
- Topographic data is obtained from the United States Geological Survey (USGS) National Elevation Datasets (NEDs) database

PB

Channel Modification

Limitations of the topographic data:

- LiDAR returns over water surfaces are not accurate
- Stream centerline, shorelines and ridge line are not accurately delineated
- Water surfaces elevations computed using these data tend to be higher when checked against models developed from actual survey ground data, due to a loss in channel conveyance.

Channel Modification- Arc GIS

Case Study Nicollet County, MN Stream Minnesota River

PBS&

Study Type Limited Detail

Reach Length (miles) 24.5

Reach Description From approximately 1.25 miles upstream of its confluence with Blue Earth River to just upstream of Blue Earth/Brown County Line.

145

Channel Modification- Arc GIS

Building surfaces from existing data

- Create Triangular Irregular Network (TIN) datasets from LiDAR contours
- Convert supplemental data, USGS NED raster datasets to a point shapefile
- Correct for units meters to feet
- Add point data to TIN

PR

Channel Modification- Arc GIS

Building surfaces from existing data

Channel Modification- Arc GIS

Augmenting TIN data for channel

information

- Add channel information using 3dbreaklines
- Linearly interpolate centerline elevations between surveyed data; Limit of Detailed Study cross sections & structures

PBS

PB

Channel Modification- Arc GIS Augmenting TIN data...

Convert Features to 3D	<u>?</u> ×	🚔 🖇 🗏 🗟 🗍	3D Analyst ▼ Layer: Image: Non-state
Turns features into 3D by interpolating heights off a surface, using an attribute as source of heights, or taking a specified constant.	•	5 # • # ×	Create/Modify TIN Create TIN From Features Spatial Analyst Lay Interpolate to Raster Add Features to TIN Spatial Analyst Lay Surface Analysis Reclassify Comparison of the state of t
Source of heights		and the second	Ontions
Raster or TIN surface: tin_ft	2	- they	
C Input feature attribute: Shape_Length			
C Numeric constant: 0.00			Add Features to TIN
,			Inputs
Output features: ring\Zone A\Hydraulics\ReadyforQC\QC_Folders\dddfeat1.shp	ē 🚅	11-11-1	Input TIN: tin_ft
		Ale State	Check the layer(s) whose features are to be added to the TIN. Click a layer's name to specify its settings.
OK Can	cel	Charles .	Layers:
		" and all and all	Settings for selected layer
			Feature type: 3D lines
		The second	Contours Height source: <feature <<="" td="" value:="" z=""></feature>
		20	Triangulate as: hard line
			Tag value field:
			 Save changes into the input TIN specified above.
			C Save changes into a new output TIN:
			Output TIN: \Engineering\Zone A\Hydraulics\ReadyforQC\QC_Folders\tin
			OK Cancel

PBS

Channel Modification- Arc GIS Augmenting TIN data...

PB

Channel Modification- Arc GIS

Inter-phase with HECRAS by importing or exporting SDF (Spatial Data File)using Geo-RAS, to run the model and complete mapping.

Channel Modification- HECRAS

Case Study Crow Wing County, MN Stream Mississippi River

PВ

Study Type Approximate

Reach Length (miles) 41

Reach Description Alternating Approximate study reaches from the northeastern county boundary with Aitkin County to the southwestern county boundary with Morrison County.

ĽБ

Channel Modification- HECRAS Initial study using standard Zone A modeling procedures;

Water Surface Elevations, Model vs. Effective FIS

Mississippi River (Modeled Reach Name)	"Modeled" 1-percent-annual- Chance Elevation (Feet, NGVD 29) Elevation			cent-annual-Chance IGVD 29)	Difference in WSEL at Upstream Tie-in Locations (Feet)
	Downstream	Upstream	Downstream	Upstream	
Lower Mississippi	1151.5	1166.18	1151.5	1157.6	+8.58
Upper Mississippi	1177.8	1190.23	1177.8	1182.3	+7.93
Upper Mississippi Trib1	1187.9	1208.641	1187.9	1201.3	+7.34

PB

Channel Modification- HECRAS

Thalweg, Effective FIS Profile vs. County DEM

Modeled Reach Name	Community/Cross Section	Thalweg from Published profile (Feet)	Thalweg approximated from DEM (Feet)	Differences in Thalweg (Feet)	The FIS Profile sheet number is included in
Lower Mississippi					brackets ()
	<i>downstream</i> City of Fort Ripley/G	1132.7 (01P)	1137.29	4.59	* Read from
	<i>upstream</i> Crow Wing County/0A*	1141(01P)	1146.594	5.594	profile, not included in
Upper Mississippi					Floodway Data
	<i>downstream</i> City of Brainerd/W, X*	1152.0 (03P)	1172.247	20.247	Table (FDT)
	upstream Crow Wing County/V	1160.0 (04P)	1172.855	12.855	and here the
Upper Mississippi Trib 1					
	<i>downstream</i> Crow Wing County/AJ	1163.5 (06P)	1174.045	10.545	
	upstream Aitkin County/A	1176.5 (01P)	1185.194	8.694	

PB

Channel Modification- HECRAS Pilot Channel

- Smooth out irregularities
- Adjust main channel invert elevations to increase the depth of flow

Channel Modification- HECRAS

Pilot Channel Parameters

 Slope- straight line interpolation from the FIS thalweg elevation

Channel Slope Approximation

Modeled Reach	Downstream Thalweg Elevation from effective FIS (FT)	Upstream Thalweg Elevation from effective FIS (FT)	Length of Channel (FT)	Slope used for Pilot Channel (FT/FT)
Lower Mississippi	1132.7	1141.0	55,582	0.015%
Upper Mississippi	1152.0	1160.0	42,755	0.019%
Upper Mississippi Trib 1	1163.5	1177.5	94,611	0.015%

Channel Modification- HECRAS Pilot Channel Parameters

- Invert elevations Developed by projecting a cut from the effective FIS upper cross section elevation at the slope determined over the entire reach cross section range
- Pilot Channel Width- Estimated from FIRMs and orthophotos
- Manning's n- A weighted Manning's n of 0.05 was used for the channel and overbanks

145

PB

Channel Modification- HECRAS Cross Section Template Information

- Permanently defines changes made in the pilot channel geometric data
- Multiple templates may be used for a single reach

Channel Modification- HECRAS Template Parameters:

- Bank slope is estimated from County DEM topography and cross sections (4:1)
- Initial depth -average difference in elevation between the effective FIS thalweg and the thalweg estimated from the DEMs
- Channel top width is measured from FIRMs and orthophotos.
- Bank slope is projected downwards at the average depth, assuming a trapezoidal channel. The channel bottom width is determined by subtracting the bank/slope widths from the top width.

Channel Modification- HECRAS Computational Iterations:

- Centerline station is adjusted to the channel thalweg
- Copy invert elevations from the Pilot Channel to the "Fixed Elev" column in the Channel Design/ Modification Editor
- The bottom of the cross section template is coincident with the invert el.
- Final template design is determined by running several iterations and comparing results to effective FIS WSEL upstream.

PB

Channel Modification- HECRAS

Modified Channel

500 0197.15

500 0156.71

500 0237.34

500 0325.13

500 10000

500 10000

500 10000

500 10000

500 10260.3

500 0273.04

500 0413.25

500 0569.45

500 0676.24

500 0329.24

500 0272.08

500 0188.05

10000

Template

Template LOB Channel ROB Center Elev. Length Length Length Station

1167 389 6959 689 6959 389 6959 6636 06

500

500 500

500

500 500

500 500

500 500

500 500

500 500 500 10000

500 500

500 500 500

500 500 500 10000

500 500

500 500

500 500

500 500

500 500

500 500

500 500

500 500

1166.5 1166.5 183.2769 583.2769 583.2769 10360

1166.39 1166.39 143.9807 443.9807 443.9807 9670.24

1166.31 1166.31 172.7424 472.7424 472.7424 8528.68

Invert Elev.

1167 1167 1166.87 1166.87

1166.78 1166.78

1166.68 1166.68

1166.59 1166.59

1166.22 1166.22

1166.12 1166.12

1166.03 1166.03

1165.94 1165.94

1165.84 1165.84

1165.75 1165.75

1165.66 1165.66

1165.56 1165.5

1165.47 1165.47

1165.19 1165.19

1164.91 1164.91

1165.38 1165.38 1165.28 1165.28

35834.23 1165.09 1165.09

1165 1165 500 500

RS

46023.92

45334.23

44834.23

44334.23

43834.23

43334.23

42750.95

42306.97

41834.23

41334.23

40834.23

40334.23

39834.23

39334.23

38834.23

38334.23

37834.23

7334.23

36834.23

36334.23

35334.23

34834.23

River

uppermississipp 67

2 uppermississipj 67

3 uppermississipj 67

4 uppermississipj 67

5 uppermississip 67

6 uppermississipj 67 7 uppermississipj 67

8 uppermississipj 67

10 uppermississip 67 11 uppermississip 67

13 uppermississip 67

14 uppermississip 67

15 uppermississip 67

16 uppermississip 67

uppermississip(67

uppermississipj 67

uppermississipp 67

Reach

Template Parameters

Modeled Reach	Cross Section Width (FT)	Bank Slope (FT)	Initial Estimate Average Depth (FT)	Final Average Depth (FT)
Lower Mississippi	580	4:1	6	5
Upper Mississippi	485	4:1	17	16
Upper Mississippi Trib 1	195	4:1	9	8

Elevations at upstream tie-in locations

Modeled Reach	Upstream Effective FIS WSEL (Feet)	Unmodified Channel WSEL (Feet)	Upstream Pilot Channel WSEL (Feet)	Upstream Modified Channel WSEL (Feet)
Lower Mississippi	1157.6	1166.18	1166.18	1160.28
Upper Mississippi	1182.3	1190.23	1185.2	1182.67
Upper Mississippi Trib 1	1201.3	1208.641	1208.67	1203.30

Fixed Slope Slope Interp. Cut Fill Elev. US DS Dist. Area Area

PB

Channel Modification- HECRAS

Attribute cross section data with computed water surface elevations or export SDF (Spatial Data File)using Geo-RAS to complete mapping.

Conclusion:

Pros:

- Easily modified interactively
- Can be calibrated for hydraulic parameters on the fly
- Varying cross section templates can be applied along the stream reach
- revised topography can be stored as digital format and may be used as source data for other applications.

Cons:

• This is still approximate, and actual survey data is required for detailed study.

Note: FEMA now recommends that hydraulic analysis be completed on a watershed basis to reconcile mapping between City, County and State boundaries (FEMA 2009).