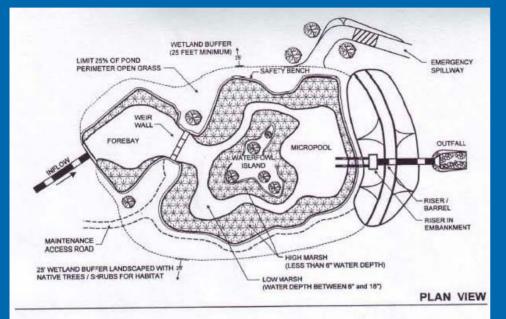
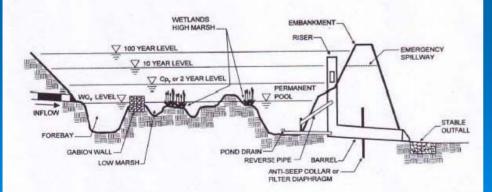

MAFSM 2007 3rd Annual Conference A Simple Water Balance for a Constructed Shallow Wetland Storm Water BMP

Paramjit Chibber, CFM – Matthew Lockard, CFM

Performance Standards for Stormwater Management in Maryland


Performance Standards


- Prevent adverse impacts of stormwater runoff
- Standards apply to construction disturbing 5,000 or more square feet
- Water quality management provided by structural and /or non-structural BMPs
- A selected BMP is presumed to comply with the performance standard if:
 - Sized to capture the prescribed water quality volume (WQ_v)
 - Designed according to the performance criteria outlined in 2000 Maryland Stormwater Manual
 - Constructed properly
 - Maintained regularly

Performance Standards for Stormwater Management in Maryland

Best Management Practices (BMPs)

- Structural BMP performance standard
 - Designed to remove
 - 80% of average annual post-development suspended solids load
 - 40% of the average annual total phosphorous load

PROFILE

Advantages

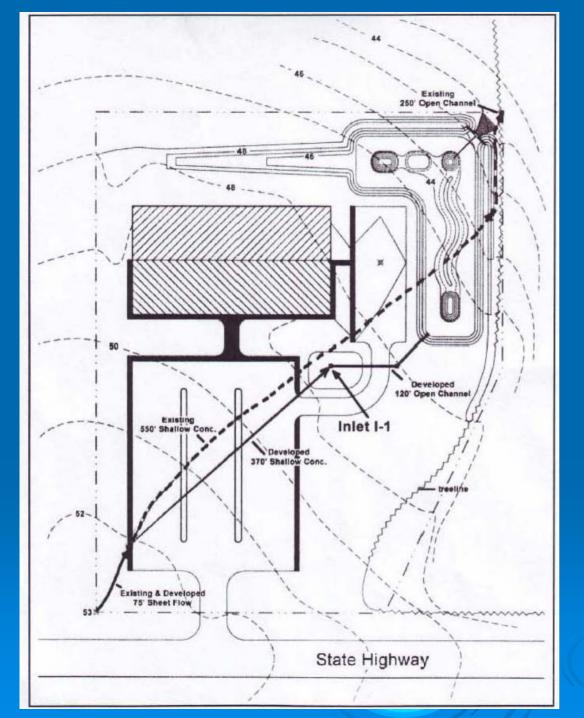
- Provides wildlife and wetlands habitat
- Provides significant water quality improvement across a broad spectrum of constituents
- Provides control of channel erosion

Limitations

- Aesthetics (swampy)
- Drowning hazard
- Mosquito breeding
- Slope limited
- Supplemental water demand
- Relatively large footprint
- Dam safety

	Rer	Removal Effectiveness							
Targeted Constituents	Low	Medium	High						
✓ Sediment			✓						
✓ Nutrients		✓							
✓ Trash			✓						
✓ Metals			✓						
✓ Bacteria			 ✓ () 						
✓ Oil and Grease									
✓ Organics									

Design parameters: sizing criteria


- Water quality volume (WQ_v)(acre-feet)
 - Storage required to capture and treat 90% of the average annual rainfall depth (P)
 - Eastern rainfall zone P=1.0"
 - Western rainfall zone P=0.9"

Constructed Shallow Wetland $WQ_v = [(P)(Rv)(A)]/12$ $WQ_v = Water Quality Volume (ac. ft.)$ P = 90% of the Average Annual Rainfall (in.) Rv = Volumetric Runoff Coefficient A = Site Area (acres)

Design Parameters: sizing criteria (cont.)

- Wetland treatment criteria
 - Surface area
 - 1.5% of drainage catchment
 - Micropool + Forebay
 - 25% of WQ_V
 - minimum depth: 4 feet
 - High marsh
 - 35% of total surface area
 - water depth: 6 inches or less
 - Low marsh
 - 65% of total surface area
 - water depth: 6 to 18 inches

Shallow Wetland Design Example Clevenger Community Center

Shallow Wetland – Design Example Clevenger Community Center¹

Site Drainage Area	5.3 acres
Total Impervious Area	1.94 acres
Existing Ground Elevation at Outfall	44.5' NGVD
Seasonal High Water Table	41.0' NGVD
Rainfall Zone (P)	1"

¹Design Example 1 – Appendix C; *2000 Maryland Stormwater Design Manual*, Maryland Department of the Environment

Shallow Wetland – Design Example Site Data

Drainage Area	5.3 acres
Post Developed Conditions CN	74
2-yr. Design Rainfall Event	3.3"
2-yr. Design Storm Runoff	1.1"
Water Quality Volume (WQ _v)	0.167 ac-ft
Groundwater Recharge Volume (Re _v)	0.0456 ac-ft
Surface Area of Wetland (minimum 1.5% of drainage area to BMP)	0.0795 acres

Shallow Wetland – Design Example Wetland Configuration

	Design	Provided
Surface Area of Wetland	3463 SF	5950 SF
Deep Water Zone (depth \geq 4')	1326 CF	1950 CF
High Marsh (depth \leq 6")	1212 SF	2160 SF
Low Marsh (depth 6" to 18") ¹	1039 SF	2040 SF
Total Marsh	2251 SF	4200 SF
Deep Water Zone (depth \ge 4') ²	-	1750 SF

¹Estimated: Total marsh area less high marsh area

²Estimated: Total surface area of wetland less total marsh area

Shallow Wetland – Design Example

Evaporation Rates for Maryland Ponds

	April	Мау	June	July	August	September
Evaporation (ft.)	0.36	0.44	0.52	0.54	0.46	0.35

Maximum Drawdown

Volume of Runoff (2-year storm)	1.1"
2-year Rainfall (P)	3.3"/0.275'
Runoff Efficiency (E)	0.33
Inflow	0.48 ac-ft
Maximum Monthly Evaporation (July)	0.54'
Evaporation Volume	0.074 ac-ft

Inflow > Outflow (Evap)

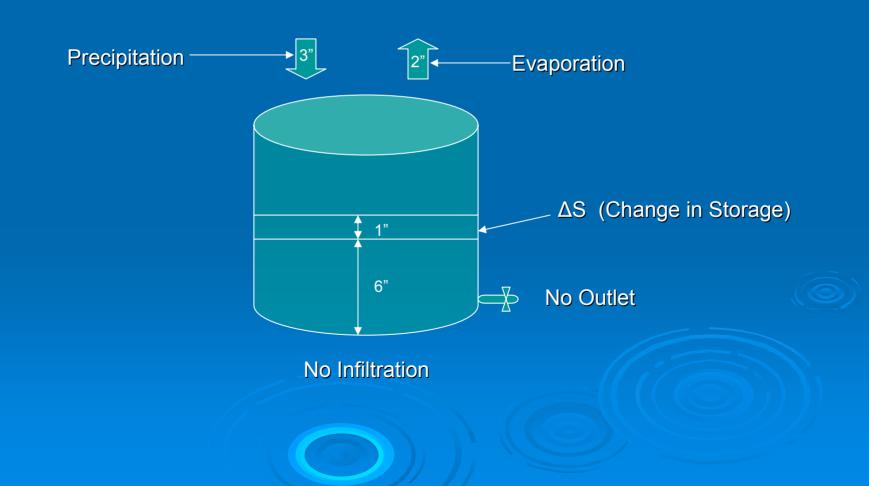
The hydrologic balance for wetland surface can be defined as:

$P + R_i - R_o - E_s - T_s - I = \Delta S$

P is direct precipitation

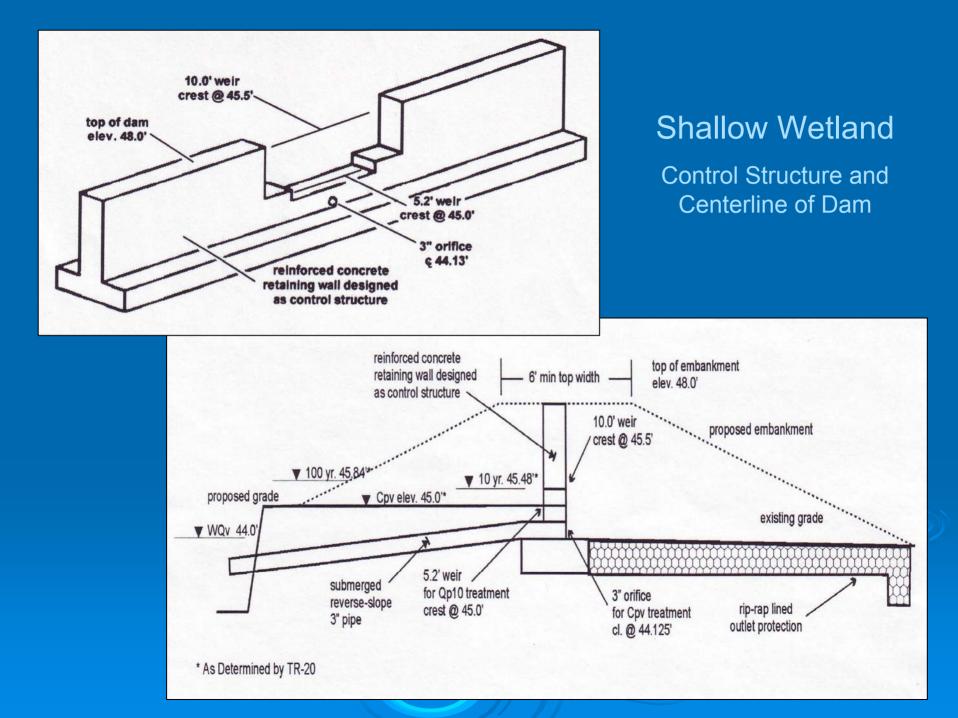
R_i is runoff from the site

R_o is outflow from the wetland


 E_s is evaporation from the wetland open water surface

T_s is transportation from wetland vegetation

I is infiltration


 ΔS is the change of storage in the wetlands

Simple Water Balance for a Pond

Shallow Wetland – Water Balance Stage-Storage Data

Elevation	∆ Storage	Storage (cubic feet)	Storage (acre-feet)
40.0	0.0	0.0	0.0
41.0	372.0	372.0	0.0085
42.0	665.0	1,037.0	0.0238
43.0	1,428.0	2,465.0	0.0566
44.0	3,990.0	6,455.0	0.1482
45.0	11,200.0	17,665.0	0.4055
45.5	8,478.0	26,133.0	0.5999
46.0	8,987.0	35,120.0	0.8062
47.0	19,530.0	54,650.0	1.2546
48.0	21,646.0	76,296.0	1.7515

Shallow Wetland – Water Balance Stage - Discharge Data

Elevation	Total Discharge
44.00	0.00
44.25	0.085
44.50	0.150
44.75	0.194
45.00	0.229
45.50	5.70
46.00	27.08
47.00	102.54
48.00	206.29

Evapotranspiration

The evaporation from all water, soil, snow, ice, vegetative and other surfaces, plus transpiration.

Potential Evapotranspiration

Evapotranspiration if there is adequate soil moisture supply at all times.

Method of Estimation of Potential Evapotranspiration

Thornthwaite's Equation: This equation is based on air temperature (heat index) with an adjustment made for daylight hours.

$$ET_a = 1.6c \left[\frac{10t_c}{TE}\right]^a$$

ETa = Adjusted Evapotrans piration (cm/month) tc = Temprature Degree C Heat Index = $(tc/5)^{1.514}$ TE = Thornthwai te's temprature efficiency Index = \sum_{1}^{12} Heat Index $a = 0.00000675 TE^3 - 0.00000771 TE^2 + 0.01792 TE + 0.49239$ c = Daylight Adjustment Factor

Potential Evapotranspiration Estimation using Thornthwaite's Equation Charles County, MD

	Mean Monthly	Mean Monthly	Monthly Heat	Unadjusted	Day Light	Adjusted	Adjusted
Month	Temprature	Temprature	Index	Evapotranspiration	Adjustment	Evapotranspiration	Evapotranspiration
	(deg F)	(deg C)		(cm/month)	Lat. 38.5	(cm/month)	(in/month)
January	35.0	1.7	0.190	0.24	0.849	0.21	0.08
February	38.5	3.6	0.611	0.74	0.836	0.62	0.24
March	46.6	8.1	2.080	2.41	1.030	2.48	0.98
April	55.8	13.2	4.359	4.90	1.076	5.41	2.13
Мау	63.9	17.7	6.792	7.50	1.189	9.24	3.64
June	71.6	22.0	9.423	10.27	1.182	12.72	5.01
July	75.8	24.3	10.977	11.90	1.202	14.96	5.89
August	74.4	23.6	10.450	11.35	1.146	13.32	5.24
September	68.3	20.2	8.260	9.05	1.023	9.39	3.70
October	57.6	14.2	4.868	5.45	0.963	5.25	2.07
November	48.4	9.1	2.481	2.85	0.839	2.39	0.94
December	39.2	4.0	0.713	0.86	0.822	0.71	0.28

Clevenger Community Center Constructed Shallow Wetland (Average Precipitation)

		Mean Monthly	Mean	Mean	Open Water	Potential	Combined	Begining of	Net	Outflow from	Change in	
Month			Monthly	Monthly	Evaporation	Evapo- Tanspiration	Losses	Month				Deficit/Surplus
		Precipitation	Runoff	Runoff	(Evap.)	(ET)	(Evap.+ ET)	Storage	Inflow/Loss	Structure	Storage	
		(inches)	(inches)	(cu. Feet)	(inches)	(inches)	(cu. feet)	(cu. feet)	(cu. feet)	(cu. feet)	(cu. feet)	
January		3.42	1.14	21932								
February		2.85	0.95	18277								
March		3.96	1.32	25395								\frown
April	on	3.11	1.04	19944	4.32	2.13	8306	6455	11639	10368	1271	Surplus
Мау	ason	4.13	1.38	26486	5.28	3.64	10513	7726	15973	10368	5605	Surplus
June	Se	3.81	1.27	24434	6.24	5.01	12673	13331	11761	10368	1393	Surplus
July	rowing	4.12	1.37	26422	6.48	5.89	13402	14724	13020	10368	2652	Surplus
August	MO.	4.6	1.53	29500	5.52	5.24	11496	17375	18004	10368	7636	Surplus
September	ß	4.31	1.44	27640	4.2	3.70	8644	25011	18996	10368	8628	Surplus
October		3.36	1.12	21548								
November		3.21	1.07	20586								
December		3.16	1.05	20265								

Clevenger Community Center Constructed Shallow Wetland (Below Average Precipitation)

		Mean	Mean	40% of	Open Water	Potential Evapo-	Combined	Begining	Net	Outflow	End of	Change in	
Month		Monthly	Monthly	Mean Monthly	Evaporation			of Month		from	Month		Deficit/Surplus
		Precipitation	Runoff	Runoff	(Evap.)	Tanspiration (ET)	Evap.+ ET	Storage	Inflow/Loss	Structure	Storage	Storage	
		(inches)	(inches)	(cu. Feet)	(inches)	(inches)	(cu. feet)	(cu. feet)	(cu. feet)	(cu. feet)	(cu. feet)	(cu. feet)	
January		3.42	1.14	8773									
February		2.85	0.95	7311									
March		3.96	1.32	10158				(
April	uo	3.11	1.04	7978	4.32	2.13	8306	6455	-328	0	6127	-328	Deficit
May	as	4.13	1.38	10594	5.28	3.64	10513	6127	82	0	6209	82	Deficit
June	Se	3.81	1.27	9773	6.24	5.01	12673	6209	-2899	0	3309	-2899	Deficit
July	owing	4.12	1.37	10569	6.48	5.89	13402	3309	-2833	0	476	-2833	Deficit
August	MO,	4.6	1.53	11800	5.52	5.24	11496	476	304	0	780	304	Deficit
September	Ū	4.31	1.44	11056	4.2	3.70	8644	780	2412	0	3193	2412	Deficit
October		3.36	1.12	8619									
November		3.21	1.07	8234									
December		3.16	1.05	8106									

Shallow Wetland – Design Example Worst Case Drawdown

Maximum Monthly Evaporation	0.54 ft
Average Evaporation per Day	0.017 ft/day
Evaporation over 45 Days	0.78 ft
Normal Pool – WQ _v at Elev. 44.0 feet	6455 cu. ft.
Worst Case Draw at Elev. 43.2 feet	3263 cu. ft.

Clevenger Community Center Constructed Shallow Wetland (Below Average Precipitation)

		Mean	Mean	40% of	Open Water	Potential Evapo-	Combined	Begining	Net	Outflow	End of	Change in	
Month		Monthly	Monthly	Mean Monthly	Evaporation			of Month		from	Month		Deficit/Surplus
		Precipitation	Runoff	Runoff	(Evap.)	Tanspiration (ET)	Evap.+ ET	Storage	Inflow/Loss	Structure	Storage	Storage	
		(inches)	(inches)	(cu. Feet)	(inches)	(inches)	(cu. feet)	(cu. feet)	(cu. feet)	(cu. feet)	(cu. feet)	(cu. feet)	
January		3.42	1.14	8773									
February		2.85	0.95	7311									
March		3.96	1.32	10158				(
April	Growing Season	3.11	1.04	7978	4.32	2.13	8306	6455	-328	0	6127	-328	Deficit
May		4.13	1.38	10594	5.28	3.64	10513	6127	82	0	6209	82	Deficit
June		3.81	1.27	9773	6.24	5.01	12673	6209	-2899	0	3309	-2899	Deficit
July		4.12	1.37	10569	6.48	5.89	13402	3309	-2833	0	476	-2833	Deficit
August		4.6	1.53	11800	5.52	5.24	11496	476	304	0	780	304	Deficit
September		4.31	1.44	11056	4.2	3.70	8644	780	2412	0	3193	2412	Deficit
October		3.36	1.12	8619									
November		3.21	1.07	8234									
December		3.16	1.05	8106									

RESULTS AND CONCLUSIONS

Single month (runoff – evaporation), simple water budget example is supported by the extended growing season water balance

>Extended, worst case, simple water budget indicates a water deficit at the end of the 45 day period.

Extended growing season water balance approach with 40% mean monthly runoff indicates a water deficit in all months with possible winter months recovery

In any extended period of insufficient precipitation/runoff – a source of supplemental water will be necessary to support the wetland vegetation.

Questions?