MICHAEL BAKER CORPORATION

Activities of the Maryland Hydrology Panel

Wilbert O. Thomas, Jr.

Maryland Association of Floodplain and Stormwater Managers October 25, 2007 Linthicum, Maryland

Outline of the Presentation

• The objectives of the presentation are to describe:

- Purpose of the Hydrology Panel
- Previous accomplishments and reports
- Recommended hydrologic methods
- Content of the current Panel report
- Major improvements or changes in methodology
- Revisions in methodologies that are underway

Purpose of Hydrology Panel

 Hydrology Panel convened in June 1996 by Maryland State Highway Administration (SHA) and Maryland Department of Environment (MDE)

Mission of the Panel was

 Review Maryland hydrologic practices and make recommendations concerning peak flood estimating procedures that will best serve to satisfy agency needs, Maryland laws and regulations. Baker

Purpose of Hydrology Panel

• The Hydrology Panel was to

- explore the development of improved procedures that would ensure an optimal balance between preserving the environmental quality of Maryland streams and the hydraulic performance of highway drainage structures.
- MDE had selected the TR-20 model for computing flood flows in Maryland; SHA wanted to make greater use of regional regression equations based on USGS streamgaging records

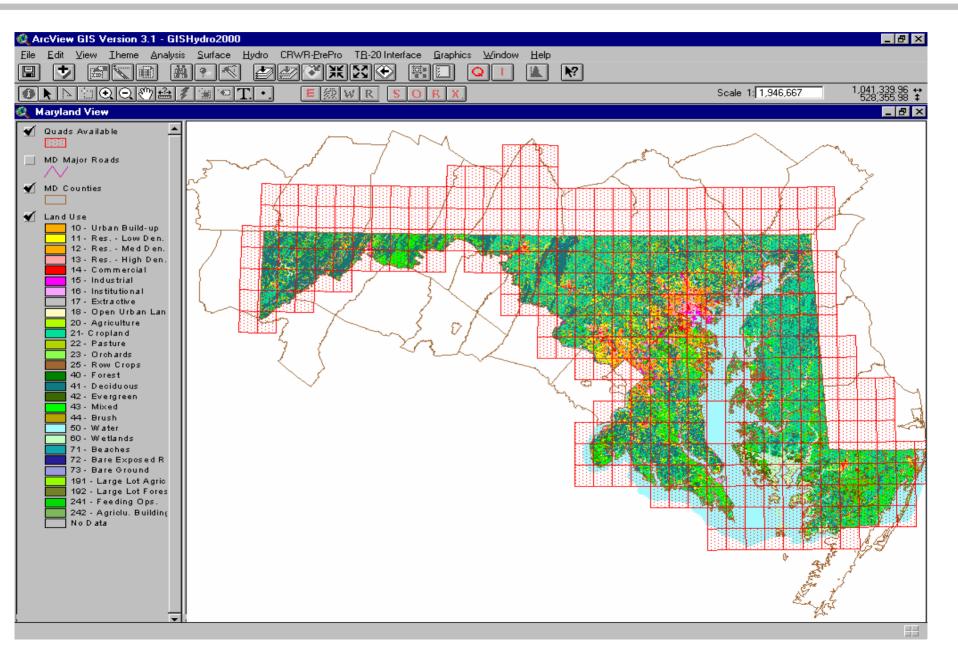
Hydrology Panel Reports


- In February 2001, the Panel issued the report *Application of Hydrologic Methods in Maryland*
- Recommended hydrologic procedures included
 - TR-20 model developed by NRCS to serve as the base method
 - Design discharges based on ultimate development
 - TR-20 calibrated to flood discharges estimated at USGS gaging stations or from regional regression equations

Hydrology Panel Reports

- With experience with the recommended methods, numerous suggestions for improvements were made
- In Fall of 2002, the Panel was reconvened to evaluate improvements in the hydrologic procedures
- In August 2006, a revised version of Application of Hydrologic Methods in Maryland was published
 - <u>http://www.gishydro.umd.edu/panel.htm</u>

August 2006 Panel Report



August 2006 Panel Report

August 2006 report continued to recommend

- TR-20 model calibrated to flood discharges estimated at gaging stations or from regional regression equations
- TR-20 and regional regression procedures implemented within GISHydro2000 – software package developed by the University of Maryland with funding from SHA
 - GIS software based on ArcView Version 3 that includes statewide land use, soils and topographic data

GISHydro2000

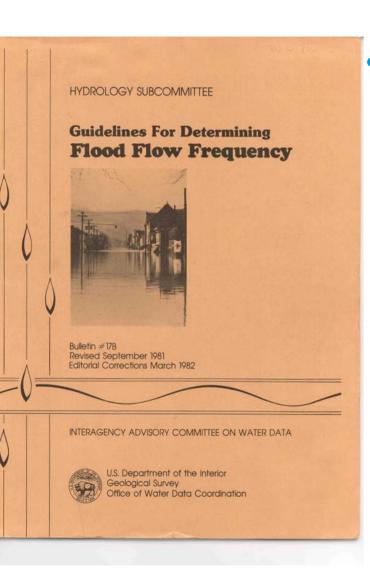
What Does GISHydro2000 Do?

Data Assembly

- Current Data Sets
 - Topography (USGS NED 30-m DEMs)
 - Land Use (several dates from 1970 to 2002)
 - Hydrologic Soil Type (Ragan, STATSGO, SSURGO)
- Visual Interface Developed to Access Database
- Automatic Basin Delineation Implemented

Hydrologic Analyses

- Calculates Watershed Properties
- Implements regional regression equations
- TR-20 Pre-Processor


- GISHydro2000 is available at no cost at
 - <u>http://www.gishydro.umd.edu</u>
- A web-based version of the software is available at
 - <u>http://www.gishydro.umd.edu/web.htm</u>
- Software is also available at SHA headquarters for firms performing work on state or county-funded projects by contacting Andy Kosicki at SHA

The Maryland Hydrology Panel

• The current Hydrology Panel consists of:

- Richard Berich, Dewberry & Davis
- Donald Woodward, retired Natural Resources
 Conservation Service
- Glenn Moglen, University of Maryland
- William Merkel, Natural Resources
 Conservation Service
- Michael Casey, George Mason University
- Wilbert Thomas, Michael Baker, Jr.
- Andy Kosicki and Len Podell, Maryland State
 Highway Administration
- Dave Guignet, Maryland Dept of Environment

- At a gaged site, Bulletin 17B (*Guidelines For Determining Flood Flow Frequency*) estimates weighted with regional regression estimates
- Within 50 percent of the drainage area of a gaged site, transpose weighted gaged estimates using procedures documented in USGS WRIR 95-4154
- Ungaged locations, TR-20 model calibrated to gaging station data or regional regression estimates

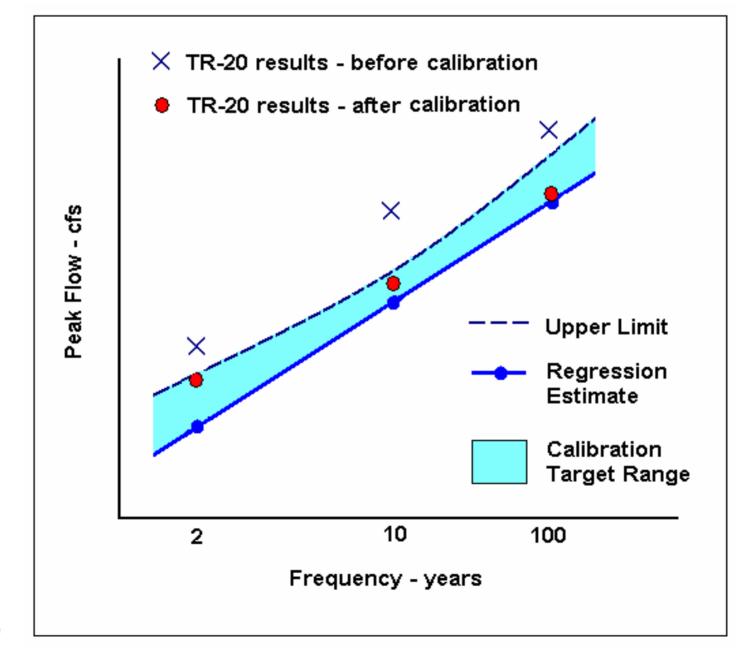
Bulletin 17B

Bulletin 17B - Published in 1982, includes guidelines for:

- Fitting Pearson Type III distribution to logarithms of annual peak flows
- Estimating generalized skew
- Weighting generalized skew with station skew
- Low- and high-outlier detection tests
- Conditional probability adjustment for low outliers
- Adjustments for historic flood data

Estimates at gaging stations

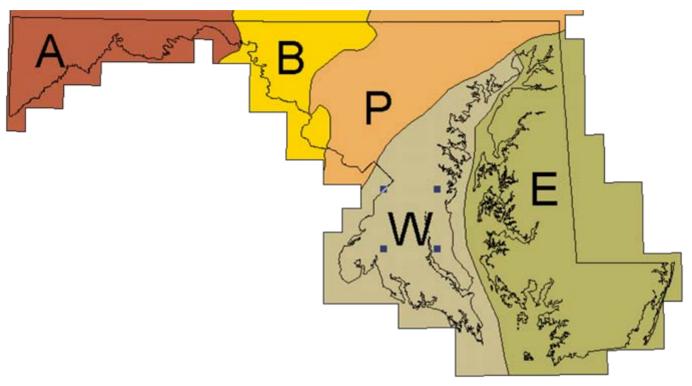
- Perform Bulletin 17B analyses at gage (USGS PeakFQ or USACE HEC-FFA)
- Weight flood discharges with regression estimates using equivalent years of record (USGS WRIR 95-4154)
- Weighted estimate is more accurate as described in Appendix 8 of Bulletin 17B


- Estimates on a gaged stream within 50 percent of drainage area of gaged site
 - Define ratio of weighted to regression estimate at gaged site, R = Qw/Qr
 - Scale R based on difference in drainage area between the ungaged site and gaging station to get Rw
 - Compute final discharge Qf = Rw * Qu where Qu is regression estimate
 - Concept: At gage use Qw and at plus or minus 50 percent of gaged drainage area, use regression estimates (Rw becomes 1.0)

Estimates at ungaged sites

- Calibrate TR-20 estimates using regional regression or gaging station estimates (existing land-use conditions)
- Calibration window illustrated in next slide
- Objective is to get TR-20 estimates within calibration window, between regression estimates and plus one standard error of prediction
- Use TR-20 to estimate flood discharges for ultimate land-use conditions

Calibration of TR-20 model



Calibration Procedures

- Fixed region regression equations are used to "calibrate" TR-20 estimates
- Fixed region regression equations were developed through a UMD research project with SHA funding (Moglen and others, 2006)
- Regression equations developed using flood data and watershed characteristics for 154 stations in Maryland and Delaware
- Hydrologic regions were the same as those used in USGS WRIR 95-4154

Maryland's Physiographic Provinces

- A = Appalachian Plateaus and Allegheny Ridges
- B = Blue Ridge and Great Valley
- P = Piedmont
- W = Western Coastal Plain
- E = Eastern Coastal Plain

Fixed Region Regression Equations

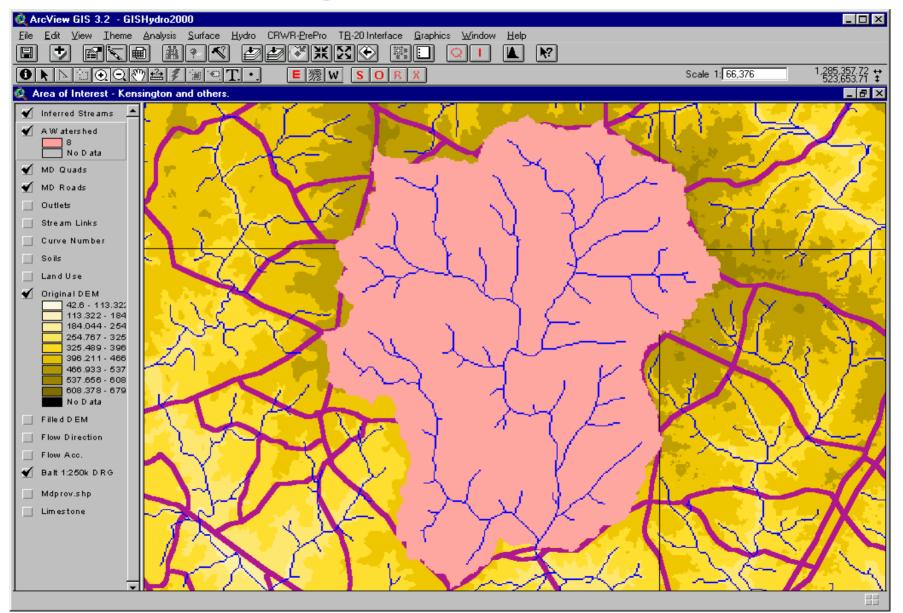
- Piedmont Region has two sets of equations for rural and urban watersheds
 - Rural (< 10 percent impervious area (IA))</p>
 - $Q_{100} = 2897 DA^{0.613} (FOR+1)^{-0.238}$
 - Urban (10 percent or greater IA)
 - $Q_{100} = 898.3 DA^{0.619} (IA+1)^{0.222}$

where DA is drainage area in square miles, FOR is forest cover in percent, and IA is impervious area in percent

Fixed Region Regression Equations

Western Coastal Plain region has equations applicable for rural and urban watersheds

$$- Q_{100} = 143.56 \text{ DA}^{0.586} \text{ (IA+1)}^{0.260} \text{ (S}_{D} \text{ +1)}^{0.469}$$


where S_D is percent D soils (STATSGO data)

Fixed Region Equations for Piedmont and Western Coastal Plain allow calibration of TR-20 model for existing urban conditions

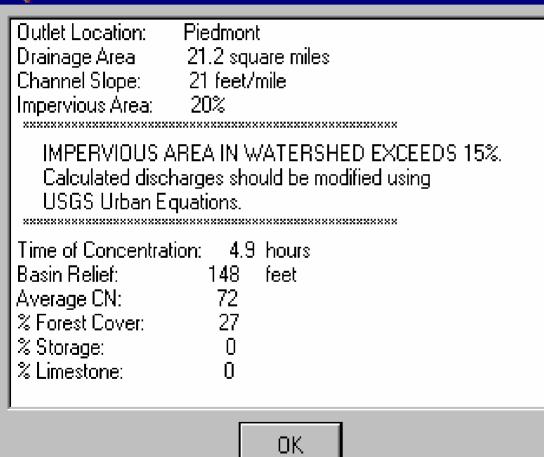
- Input parameters for Fixed Region equations and TR-20 model are estimated using GISHydro2000
- Fixed Region regression equations and TR-20 are implemented within GISHydro2000
- Following slides illustrate some of these capabilities

Delineating the Watershed...

Baker

ChallengeUs.

The "Basin Composition" Menu Choice


Distribution of Land Us Land Use	Acres	Percent	4	B	C		
				_	_		_
Low Density Residential	2865.47			70	80	85	- fi
Medium Density Residential	2521.12			75	83	87	
High Density Residential	1016.99			85	90	92	
Commercial	95.96		·	92	94	95	
Institutional	468.09			88	91	93	
Open Urban Land	1175.16			61	74	80	
Cropland	756.20			81	88	91	
Pasture	471.99	3.4	8 39	61	74	80 j	
Orchards	20.20	0.1	5 32	58	72	79	
Deciduous Forest	3559.23	26.2	8 30	55	70	77	
Mixed Forest	112.72	0.8	3 30	55	70	77	
Brush	158.63	1.1	7 30	48	65	73	
Water	11.25	0.0	8 100	100	100	100	
Bare Ground	311.29	2.3	0 77	86	91	94	H
							Ē
٠. ۱							ſ
Distribution of Land Us	e by Soil Gro	oup				[_
<u>↓</u>	e by Soil Gro <u>A_</u> Scil	oup E_Sail	<u>C_</u> Scil	D	Soil		_
 ▲ Distribution of Land Us 			<u>C_</u> 5cm 146.46		_ <i>Scil</i> 170.34](
Distribution of Land Us Land Use	ASON	B_Soll				<u> </u>	
Distribution of Land Us Land Use Low Density Residential	A_ <i>Scill</i> 0.00	<u>B_Soil</u> 2546.37	146.46		170.34	[
Distribution of Land Us Land Us Land Use Low Density Residential Medium Density Residential	<u>A_5;;;;</u> 0.00 0.00	E_Scoll 2546.37 2244.95	146.46 64.97		170.34 209.37	<u> </u> _	
Distribution of Land Us Land Us Land Use Low Density Residential Medium Density Residential High Density Residential	<u>A_Sold</u> 0.00 0.00 0.00	<u>B_Soli</u> 2546.37 2244.95 905.42	146.46 64.97 35.81		170.34 209.37 74.84	1	
Distribution of Land Us <u>Land Use</u> Low Density Residential Medium Density Residential High Density Residential Commercial	A_Soil 0.00 0.00 0.00 0.00	<u>F</u> _Stal 2546.37 2244.95 905.42 53.95	146.46 64.97 35.81 2.75		170.34 209.37 74.84 39.03		_
Distribution of Land Us <u>Land</u> Use Low Density Residential Medium Density Residential High Density Residential Commercial Institutional	<u>A_Swi</u> 0.00 0.00 0.00 0.00 0.00	<u>F_Sold</u> 2546.37 2244.95 905.42 53.95 397.15	146.46 64.97 35.81 2.75 39.26		170.34 209.37 74.84 39.03 31.68]	
Distribution of Land Us Land_Use Low Density Residential Medium Density Residential High Density Residential Commercial Institutional Open Urban Land Cropland	A_Scrif 0.00 0.00 0.00 0.00 0.00 0.00 0.00	<u>R_Sold</u> 2546.37 2244.95 905.42 53.95 397.15 924.47 636.36	146.46 64.97 35.81 2.75 39.26 38.11 58.08		170.34 209.37 74.84 39.03 31.68 202.71 61.75		
Distribution of Land Us Land_Use Low Density Residential Medium Density Residential High Density Residential Commercial Institutional Open Urban Land	A_Soil 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<u>B_Soli</u> 2546.37 2244.95 905.42 53.95 397.15 924.47	146.46 64.97 35.81 2.75 39.26 38.11		170.34 209.37 74.84 39.03 31.68 202.71		
Distribution of Land Us Land Use Low Density Residential Medium Density Residential High Density Residential Commercial Institutional Open Urban Land Cropland Pasture Orchards	<u>A_Smi</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	<u>R_Stail</u> 2546.37 2244.95 905.42 53.95 397.15 924.47 636.36 356.75 17.91	146.46 64.97 35.81 2.75 39.26 38.11 58.08 67.49 2.07		170.34 209.37 74.84 39.03 31.68 202.71 61.75 46.83 0.23		
Distribution of Land Us Land_Use Low Density Residential Medium Density Residential High Density Residential Commercial Institutional Open Urban Land Cropland Pasture Orchards Deciduous Forest	<u>A_Smi</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	<u>₹_50</u> 2546.37 2244.95 905.42 53.95 397.15 924.47 636.36 356.75 17.91 2258.26	146.46 64.97 35.81 2.75 39.26 38.11 58.08 67.49 2.07 330.58		170.34 209.37 74.84 39.03 31.68 202.71 61.75 46.83 0.23 965.56		
Distribution of Land Us Land_Use Low Density Residential Medium Density Residential High Density Residential Commercial Institutional Open Urban Land Cropland Pasture Orchards Deciduous Forest Mixed Forest	<u>A_Smi</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	<u>₹_50</u> 2546.37 2244.95 905.42 53.95 397.15 924.47 636.36 356.75 17.91 2258.26 79.66	146.46 64.97 35.81 2.75 39.26 38.11 58.08 67.49 2.07 330.58 31.22		170.34 209.37 74.84 39.03 31.68 202.71 61.75 46.83 0.23 965.56 1.84		<u> </u>
Distribution of Land Us Land_Use Low Density Residential Medium Density Residential High Density Residential Commercial Institutional Open Urban Land Cropland Pasture Orchards Deciduous Forest Mixed Forest Brush	AS.cvi/ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<u>R</u> _Sold 2546.37 2244.95 905.42 53.95 397.15 924.47 636.36 356.75 17.91 2258.26 79.66 138.66	146.46 64.97 35.81 2.75 39.26 38.11 58.08 67.49 2.07 330.58 31.22 3.67		170.34 209.37 74.84 39.03 31.68 202.71 61.75 46.83 0.23 965.56 1.84 16.30		
Distribution of Land Us Land_Use Low Density Residential Medium Density Residential High Density Residential Commercial Institutional Open Urban Land Cropland Pasture Orchards Deciduous Forest Mixed Forest Brush Water	<u>A_Smi</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	<u>R</u> _Sold 2546.37 2244.95 905.42 53.95 397.15 924.47 636.36 356.75 17.91 2258.26 79.66 138.66 4.13	146.46 64.97 35.81 2.75 39.26 38.11 58.08 67.49 2.07 330.58 31.22 3.67 0.00		170.34 209.37 74.84 39.03 31.68 202.71 61.75 46.83 0.23 965.56 1.84 16.30 1.84		
Distribution of Land Us Land_Use Low Density Residential Medium Density Residential High Density Residential Commercial Institutional Open Urban Land Cropland Pasture Orchards Deciduous Forest Mixed Forest Brush	AS.cvi/ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<u>R</u> _Sold 2546.37 2244.95 905.42 53.95 397.15 924.47 636.36 356.75 17.91 2258.26 79.66 138.66	146.46 64.97 35.81 2.75 39.26 38.11 58.08 67.49 2.07 330.58 31.22 3.67		170.34 209.37 74.84 39.03 31.68 202.71 61.75 46.83 0.23 965.56 1.84 16.30		

Hydro	CRWR- <u>P</u> rePro	Т <u>В</u> -:				
<u>P</u> roperties						
Bas	in Composition					
Bas	in <u>S</u> tatistics					
Find	Similar Gages					
Calc	ulate Discharges					
Calc	ulate Hydrograph					

25

The "Basin Statistics" Menu Choice

👰 Watershed Statistics

Hydro CRWR-<u>P</u>rePro T<u>B</u>-

Properties

Basin Composition

Basin <u>Statistics</u>

Find Similar Gages Calculate Discharges Calculate Hydrograph

TR-20 Control Panel

🍭 GISHydro2000 - TR-20 Control Panel 🛛 🛛 🔀
TR-20 Input/Output File Locations Choose Input File: c:\windows\temp\tr20in.dat Output File: c:\windows\temp\tr20out.dat
Job and Title Information Job: Northwest Branch of Anacostia River Title: 2- and 5-year Events
Standard Control Ouput Options Image: Apply Output Options Only to Watershed Oultet. Image: Peak Discharge Image: Elevation Image: Hydrograph Image: Volume Image: Summary Table
Executive Control Options Main Time Increment: 0.1 hrs Starting Time: 0.0 hrs Compute Sequence: All From: To: Rainfall O Load Table O Design Storm Type II Duration 24.0 hrs Edit 10-yr 5.00 in. AMC: 2.1
OK Cancel

T <u>B</u> -20 Interface	<u>G</u> raphics
Control <u>P</u> anel	
Execute TR-2	0 Ctrl+E

- Creates TR-20 input file. Controls file I/O
- This menu choice controls all the non-"GIS-able" entries that must be conveyed to TR-20 program
- Can specify multiple storm events and magnitudes

Execute TR-20

🛃 tr20out.dat - No	otepad							-	
	<u>H</u> elp								
1									
TR20								- SCS -	
				Anacost			_	VERSION	
07/17/**	Nor			Anacost			_	2.04TEST	
13:07:21		PASS	51.	JOB NO.	1		F	PAGE 1	
EXECUTIVE CO	NTROL INCREM	I MAIN	I TIME IN	ICREMENT	10	9 HOURS			
					O VELOT				
EXECUTIVE CO Starting Ant. Runo	NIKUL GUMPUI TIMF =	- FRUI	I ASECTIO	л от [Н = 33	IU ASEUT. 20	RAIN DUF	OTTON =	1 00	
ANT, RUNO	FF COND. = 2		IAIN TIME	INCREME	ENT =	.100 HOUF			
ALTERNATE	NO. = 1		TORM NO.	. = 1		RAIN TAE	 BLE NO. =	- 2	
OPERATION AD	DHYD XSECT	10N 2							
	/#063	п	-			ЛГАИ			
PEAK TIME 18.95	(нкз)	PI	нк різсі 1126.	1HKGE(CF:	s)	PEAK	(NULL)	IN(FEET)	
10.95			1120.	.0			(NULL)		
	HYDRO	GRAPH PO	INTS FOR	R ALTER	RNATE = ·	I, STOP	KM = 1		
HRS	MAIN TIME 1							SQ.MI.	
11.60 CFS	.25			4.86	10.86				
12.40 CFS	25.16	25.60	27.87		36.68	42.72			
13.20 CFS	25.16 67 179 370	77	88	101	114	128	144 315 550 782	161	
14.00 CFS	1/9	199	219	241	265	289	315	342	
14.80 CFS 15.60 CFS	370	399	428	459	489	520	550 709	581 808	
16.40 CFS	611 832 993 1692	77 199 399 642 856 1008	878	241 459 700 900 1037	021	755 0五1	782 959	808 976	
17 20 CES	993	1008	1023	1037	1050	1062		1083	
18.00 CFS	1092	1099	1106	1111	1110	1119		1124	
18.80 CFS	1092 1125 1112 1051	1126	1126	1111 1125 1094 1019	1124	1122	1119	1116	
19.60 CFS	1112	1107 1041	1101 1030	1094	1087	1079	1071	1061	
20.40 CFS	1051	1041	1030	1019	1008	997	985	974	
21.20 CFS	963	952	942 859	931 849	921 839	910	900	890	
22.00 CFS	880	952 870 791	859				820	810	
22.80 CFS 23.60 CFS	963 880 801 729	791 720	782 711 645 585	773 703	764 694	755 686	746 678	737 669	
23.00 CFS 24.40 CFS	661	653	711 645				078 614	607	
25.20 CFS	599	653 592	585	637 578	629 571	564	557	550	
26.00 CFS	543	536	530	E 9 9	E16	509	503	496	
26.80 CFS	489	482	476	469	516 462	455	448	442	
27.60 CFS	435	536 482 428	421	414	407		393	386	
<u>ج</u>									

TR-20 is executed from within ArcView/GISHydro 2000 Interface.

Output automatically opened in "Notepad" editor for examination.

Changes in Methodology

- From the February 2001 to the August 2006 report, the following major changes were implemented:
 - Fixed Region regression equations replaced USGS WRIR 95-4154 equations
 - Better guidance for estimating design flows in limestone areas (Blue Ridge Region)
 - Better guidance in applying hydrologic methods near regional boundaries
 - Use of NOAA Atlas 14 rainfall depths in lieu of TP-40 (plus 48-hour rainfall depths)
 - Web-based version of GISHydro2000

Ongoing Changes in Methodology

- Conversion of GISHydro2000 based on ArcView Version 3 to ArcGIS Version 9 (Glenn Moglen and Mike Casey)
- Use of temporal rainfall distributions based on NOAA Atlas 14 rainfall data in lieu of the NRCS Type II distribution
- Updated Fixed Region regression equations for the Eastern Coastal Plains based on SSURGO soils in lieu of STATSGO soils