

Cost Effective Flash Flood and Flood Warning using Existing Floodplain Models?

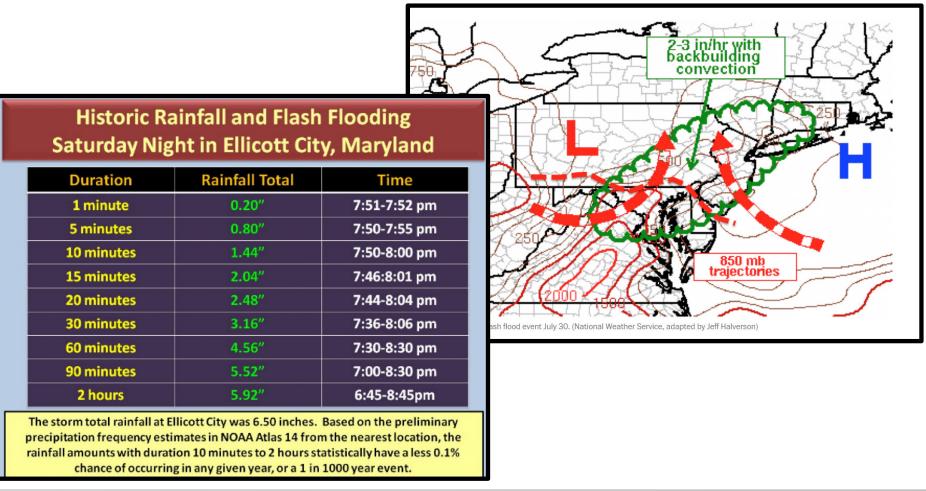
Seth Lawler, Dewberry Dinakar Nimmala, Dewberry Celso Ferreira, George Mason University

Introduction: Thinking Out loud

It's the next thing.

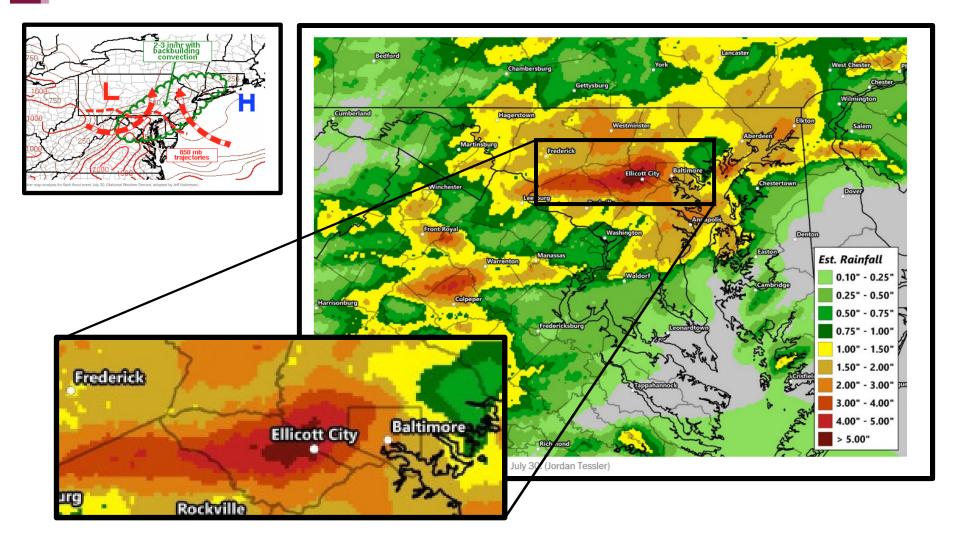
We are **not satisfied** leaving models on the shelf.

Dewberry Engineers want to do it.


University Partners are asking.

Emergency Managers are waiting.

Opportunity to develop **open source solutions.**


Challenges for Forecasting: When?

Analysis at 5 p.m. that shows how air streams (heavy red, dashed arrows) at the 5,000-foot level were converging over Maryland.

Challenges for Forecasting: Where?

https://www.washingtonpost.com/news/capital-weather-gang/wp/2016/08/01/this-is-how-an-off-the-charts-flood-ravaged-ellicott-city/

Forecasting Framework

- 1. Transform Hydrologic Models
- 2. Develop Data Acquisition & Processing Schema
- 3. Automate Forcing & Input/Output
- 4. Bias Correction & Modeling Tasks
- 5. Evaluate/Configure Hydraulic connection
- 6. Post Processing/Forecast Product
- 7. Latency & Utility

Background: GMU Flood Hazard Lab

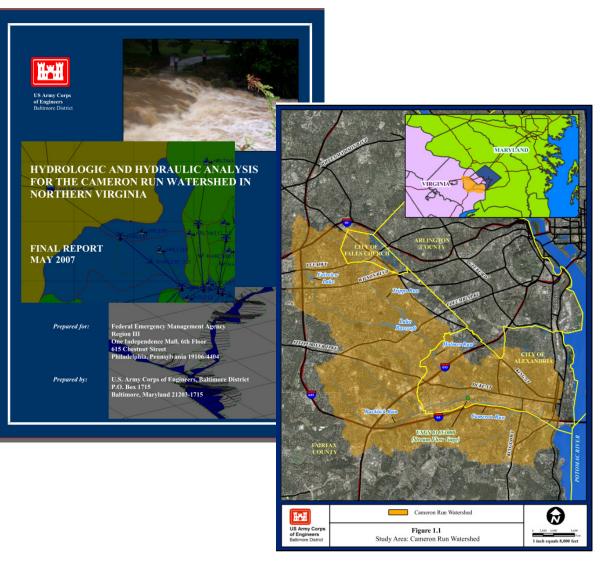
Hydro-Meteorological Monitoring Network

- ✓ Precipitation, wind, temperature...
- ✓ Water Levels, velocity, flow

Campus

- ✓ History of Flooding
- ✓ HEC-HMS
- ✓ HEC-RAS (1D2D), surveyed XS's

Poseidon Server for Real-time Flood Modeling


- ✓ Coastal Model : Running
- Riverine Model: In Progress

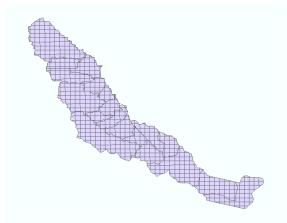
Background: Cameron Run Watershed

- High Resolution, Calibrated Models
- Nuisance/Flash Flooding
- Well Gaged
- Reservoir

Background: Duck Creek Watershed

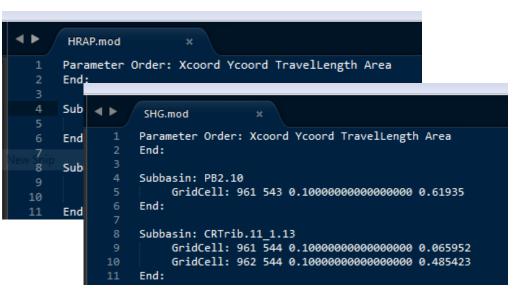
- Flash Flooding
- Structural Data
- Existing Models
- Extensive Ground Radar Network

http://www.fairfaxcounty.gov/dpwes/publications/stormwater/huntingtonfinal_ch2.pdf



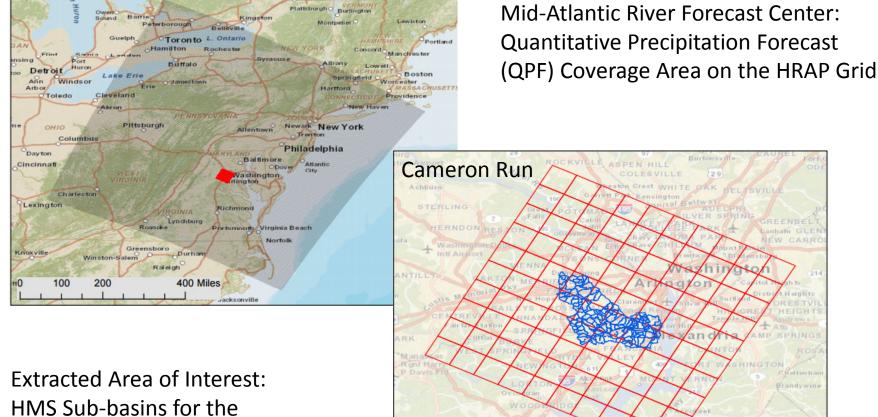
HMS Model Set-Up: HRAP or SHG Grid

1. Transform Hydrologic Models



Result: A coarse meteorological grid forcing a highly resolved hydrologic model

Map HRAP Grid Cell to Intersecting HMS Subbasin:

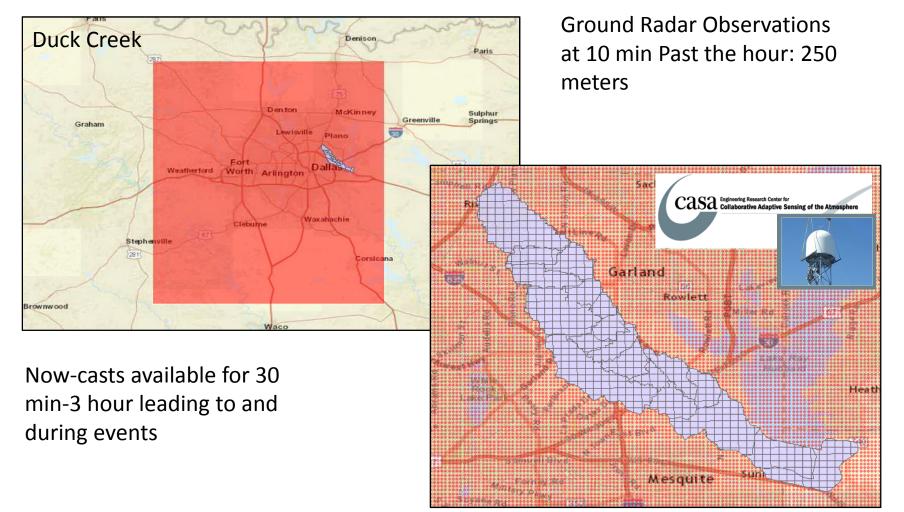

HMS .mod file

HMS Model Set-Up: QPF & HRAP

1. Transform Hydrologic Models

Cameron Run Watershed

10 | Real-Time Flood Forecasting


10

20 Miles

HMS Model Set-Up : Now-cast & SHG

1. Transform Hydrologic Models

HMS Model: Meteorological Forcing

class

de

2. Develop Data Acquisition & Processing Schema

Python Library Development

- Read Met File Data:
 - Grib/Grib2
 - XMRG
 - NETCDF
- Extract Area of Interest
- Resample Data
- Write DSS files
- Run HMS

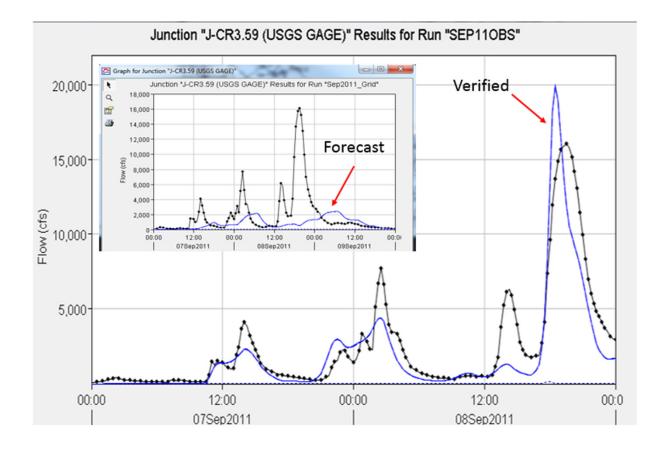
<pre>Grid(object): efinit(self, grid, coords, self.grid = grid self.coords = coords self.cellsize = cellsize ef lats(self): f = Dataset(self.grid,'r') lats = f.variables['Latitud return lats</pre>	,	python [™]
<pre>return lats ef lons(self): f = Dataset(self.grid,'r') lons = f.variables['Longitu return lons</pre>	de'][:]	
return precip def da f da def da return precip def da return def da return def da return def da return def da return def da return def da return def da return r	<pre>init(self, name): init(self, name): lf.name = name te(self): = self.name.split('_') te = datetime.strptime(f[0]+f[turn date s_start(self): s_start = self.date().strftime turn dss_start lta_t(self): = self.name.split('_') terval = findall('\d+ \D+', st alar, unit = interval[0], inte unit == 'min.': unit == 'min.': unit = 'minutes' if unit == 'hour': unit = 'hours'</pre>	:('%d%b%Y:%H%M') :r(f[2][:-3]))

http://54.215.135.182/Misc/Reports/UDFCD_QPFTool_TechMemo_Final.v2.pdf

Getting a Hydrograph: Automation

3. Automate Forcing & Input/Output

"Tech support says the problem is located somewhere between the keyboard and my chair."


How Dispensable is the Modeler?

https://s-media-cache-ak0.pinimg.com/564x/00/67/46/0067467e56db97e5ff2f6e2d3d8d161d.jpg

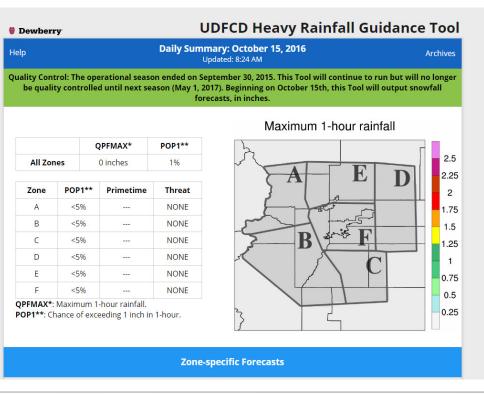
Living with the hydrograph(s)

4. Bias Correction & Modeling Tasks

Where is the correction made....precipitation forecast, hydrograph?

When is bias correction Applied?

How?

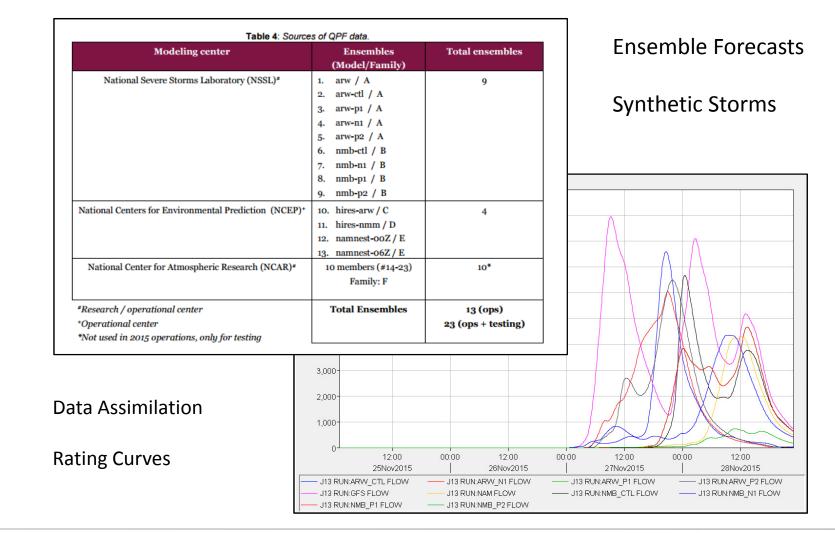


HMS Model: Meteorological Forcing

4. Bias Correction & Modeling Tasks

Modeling center	Ensembles (Model/Family)	Total ensembles
National Severe Storms Laboratory (NSSL) [#]	 arw / A arw-ctl / A arw-p1 / A arw-p2 / A arw-p2 / A nmb-ctl / B nmb-n1 / B nmb-p1 / B nmb-p2 / B 	9
National Centers for Environmental Prediction (NCEP)*	 hires-arw / C hires-nmm / D namnest-ooZ / E namnest-o6Z / E 	4
National Center for Atmospheric Research (NCAR)#	10 members (#14-23) Family: F	10*
Research / operational center Operational center Not used in 2015 operations, only for testing	Total Ensembles	13 (ops) 23 (ops + testing)

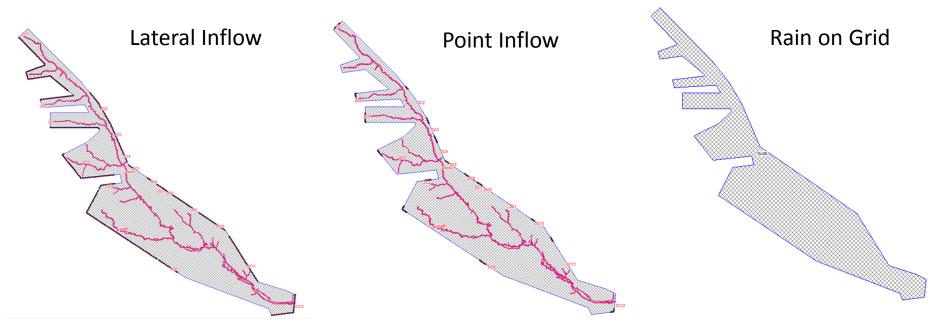
Creation of QPF's for Daily Colorado Flood Threat Guidance Tool Developed by Dewberry Meteorologist & Hydro-meteorologists



http://54.215.135.182/Misc/Reports/UDFCD_QPFTool_TechMemo_Final.v2.pdf

Using all the tools

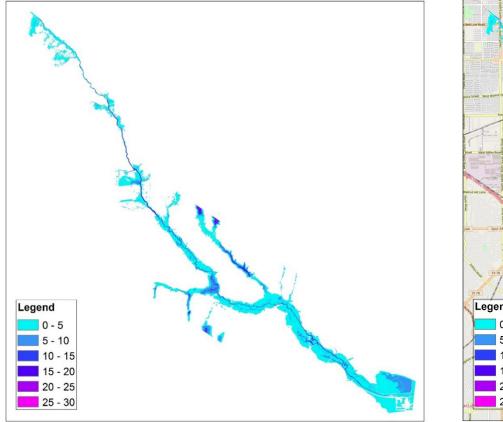
4. Bias Correction & Modeling Tasks

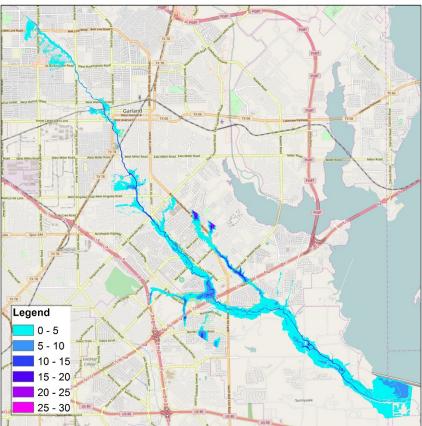

16 | Real-Time Flood Forecasting

Statistical Methods

RAS Model: Forcing

5. Configure Hydraulic connection: 2D




Cells	Cell Size (ft)	Computational Time-step (min)	Run Time (hh:mm:ss)
60,000	200		0:03:30
120,000	100	5	0:14:30
360,000	50		0:58:00

RAS Model: Post Processing

6. Post Processing/Forecast Product

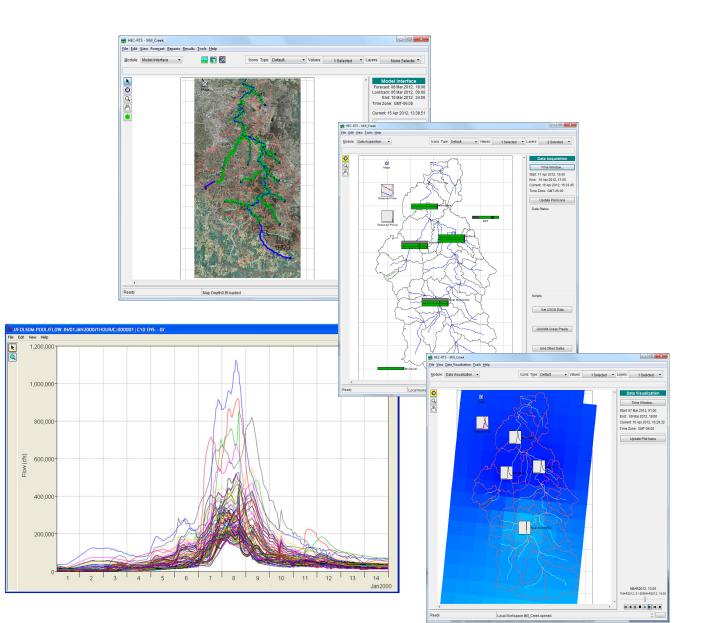
HEC-RAS 5.0 Post Processing

Precip ==> Flow ==> Floodplain Extent

7. Latency & Utility

- t0 = Precipitation Forecast Available
- t1 = Precipitation Data processed
- t2 = Hydrologic Simulation
- t3 = Hydraulic Simulation
- t4 = Floodplain/Flow Forecast Available

Latency = t0+ t1+ t2+ t3+t4


At hour 00, Latency (minutes) = 5 + 10 + 5 + 25: **45minutes**

Utility = Success – (False Alarms + Latency + Non-Detection)

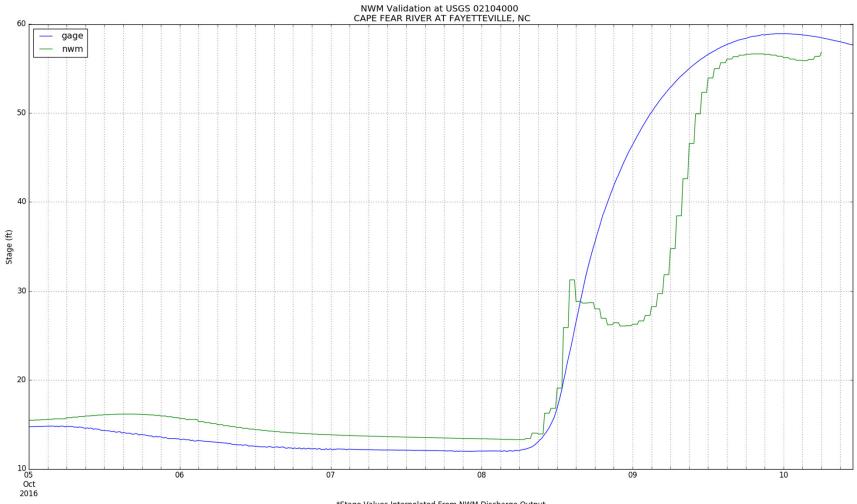
USACE

- Corps Water Management System (CWMS)
 - HEC Products
 - Oracle Database
 - Unix Operating System
 - Data Retrieval Client Based
- Real Time Simulation (RTS)
 - HEC Products
 - HEC-DSS
 - Windows PC
 - Scripting Capability

NWS: National Water Model

Current River Forecast Points (~3,600)

Model Details



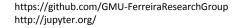
Analysis & Assimilation	Short-Range	Medium-Range	Long-Range		
Cycling Frequency					
Hourly	Hourly	Daily at 06Z	Daily Ens (16 mem)		
Forecast Duration					
- 3 hrs	0-15 hours	0-10 days	0-30 days		
Forecast Latency (la	atency of external forcing	data accounts for most o	f delay)		
1 hour	1 hour 45 mins	6 hours	19 hours		
Meteorological Forci	ng				
MRMS blend/ HRRR/ RAP bkgnd.	Downscaled HRRR/RAP blend	Downscaled GFS	Downscaled & bias- corrected CFS		
Spatial Discretization & Routing					
1km/250m/NHDPlus Reach	1km/250m/NHDPlus Reach	1km/250m/NHDPlus Reach	1 km/NHDPlus Reach		
Assimilation of USGS Obs					
Reservoirs (1260 water bodies parameterized with level pool scheme)					

NWS: National Water Model

Open Source Tools

GMU Ferreira Research Group

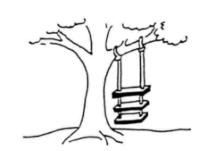
🖓 GitHub

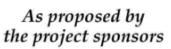

George Mason University, Department of Civil, Environmental and Infrastructure Engineering

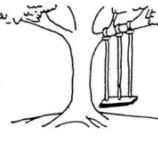
⑦ Fairfax, VA ⑦ http://frg.vse.gmu.edu ☑ cferrei3@gmu.edu

Branch: master	 FloodForecast / USGS_Data_Plotter.ipynb 			Find file	Copy path	
👫 slawler Rei	name USGS_Data_Plotter (1).ipynb to USGS_Data_Plotter.ipynb			837d0e1	6 days ago	
L contributor						
255 lines (25	i4 sloc) 6.01 KB		Raw Blame	History 🖵	/ 1	
	Step-by-step guide to retrieving	data from USGS A	PI			
	Example:					php
	Get streamflow data from selected gage for tim	e period of interest & plo	t timeseries			P
	results	e ponieu en interest a pre				VB
In []:	# Import libraries					
	%matplotlib inline import pandas as pd					
	import requests					
	import joon from datetime import datetime from collections import OrderedDict					
In []:	import json from datetime import datetime	# USGS Gage				@ C#
In []:	<pre>import json from datetime import datetime from collections import OrderedDict # Enter Desired Data</pre>	# USGS Gage # Start date (year, month, # End date	day)			@ _{C#}
In []:	<pre>import json from datetime import datetime from collections import OrderedDict # Enter Desired Data gage = "01646500" y0, m0, d0 = 2013, 4, 30 y1, m1, d1 = 2014, 5, 10 parameter = "00060"</pre>	<pre># Start date (year, month, # End date # Parameter</pre>	day)			@ c#
In []:	<pre>import json from datetime import datetime from collections import OrderedDict # Enter Desired Data gage = "01646500" y0, m0 ,d0 = 2013, 4, 30 y1, m1 ,d1 = 2014, 5, 10</pre>	# Start date (year, month, # End date	day)			© c#
In []:	<pre>import json from datetime import datetime from collections import OrderedDict # Enter Desired Data gage = "01646500" y0, m0 ,40 = 2013, 4, 30 y1, m1 ,41 = 2014, 5, 10 parameter = "000600" obser = "StreamFlow"</pre>	# Start date (year, month, # End date # Parameter # Observed data Requested # Data Format	day)			Open sour
In []: In []:	<pre>import ison from datetime import datetime from collections import OrderedDict # Enter Desired Data gage = "01646500" y0, m0, d0 = 2013, 4, 30 y1, m1, d1 = 2014, 5, 10 parameter = "00060" obser = "StreamFlow" dormat = "ison" un1 = 'http://waterservices.usgs.gov/mwis/iv' # Create Datetime Objects</pre>	# Start date (year, month, # End date # Parameter # Observed data Requested # Data Format	day)			Open sour
In []:	<pre>import joon from datetime import datetime from collections import OrderedDict # Enter Desired Data gage = "01646500" y0, m0 ,60 = 2013, 4, 30 y1, m1 ,61 = 2014, 5, 10 y1, m1 ,61 = 2014, 5, 10 parameter = "00060" obser = "StreamFlow" dformat = "json" url = 'http://waterservices.usgs.gov/mwis/iv'</pre>	# Start date (year, month, # End date # Parameter # Observed data Requested # Data Format	day)			Open sour
In [];	<pre>import json from datetime import datetime from collections import OrderedDict # Enter Desired Data gage = "01646500" y0, m0 ,d0 = 2013, 4, 30 y1, m1 ,d1 = 2014, 5, 10 y1, m1 ,d1 = 2014, 5, 10 y1, m1 ,d1 = 2044, 5, 10 parameter = "00060" obser = "StreamFlow" dformat = "json" url = 'http://waterservices.usgs.gov/nwis/iv' # Create Datetime Objects start = datetime(y0, m0, d0,0)</pre>	# Start date (year, month, # End date # Parameter # Observed data Requested # Data Format # USGS API	day)			Open sour

Open source, interactive data science and scientific computing across over 40 programming languages.




Summary & Conclusions


- In many cases, existing models can be refitted for forecasting
- Tools are readily available for transforming to an operational forecast capacity
- Forecast can be done at regional and local levels to augment national operations
- Water Resources Engineers need to become more familiar with the data types and data tools in use by meteorologist
- Flood Alerts: Operational forecast maps
- Competing Products are our friends

Questions?

As specified in the project request

As designed by the senior analyst

As produced by the programmers

As installed at the user's site

What the user wanted

