

Using the Indicators of Hydrologic Alteration and GIS to Assess the Effects of Urbanization on Flood Risk

Tim Ward

CONSULTING ENGINEERS

Inspired Solutions, Improving Lives

Outline

- Introduction
 - Objective
 - Project Overview
- Data and Methods
 - IHA Indicators of Hydrologic Alteration
 - Image Classification: Impervious Surface Coverage (ISC)
 - Spatial analysis using GIS
- Results
- Conclusion
- Discussion

Inspired Solutions, Improving Lives

Introduction

- Objective
 - Exploratory research
 - How has urbanization and ISC affected local flood risk in Baltimore County?
 - Is the IHA an effective method of measurement?
- Location
 - Baltimore County, MD
- Time Period
 - 1986 2005

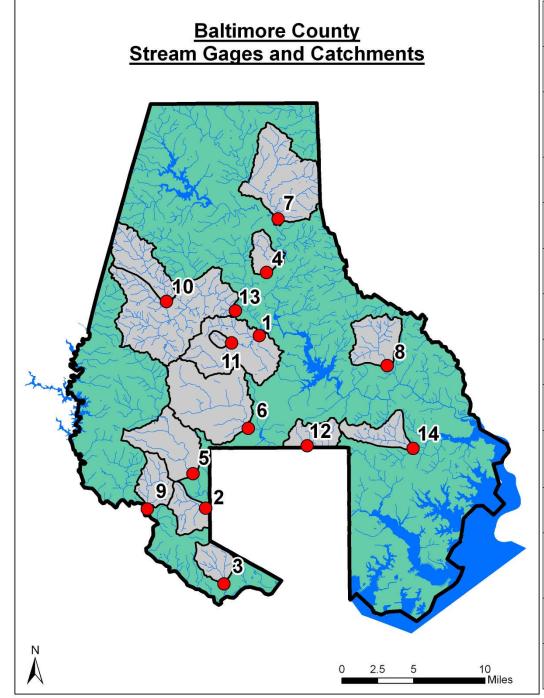
IHA - Indicators of Hydrologic Alteration

- Brian D. Richter
- Parametric and *Non-Parametric statistical analysis
- 33 hydrologic parameters
- Grouped into 5 categories
 - Magnitude, frequency, duration, timing, and rate of change
 - Includes annual, monthly, 1, 3, and 7 day statistics
 - Median values
- Assess ecological impact of a disturbance
 - Pre vs. Post
 - Proven effective for urbanization
 - Urbanization as a disturbance
- Available through the Nature Conservancy

IHA Score Card

Non-Parametric IHA Scorecar	ď							
BeaverDamRun								
	Pre-impact period:			Post-impact				
Watershed area	1			1				
Mean annual flow	24.92			31.34				
Mean flow/area	24.92			31.34				
Annual C. V.	1.21			1.58				
Flow predictability	0.68			0.74				
Constancy/predictability	0.71			0.65	6			
% of floods in 60d period	0.26			0.28	6			
Flood-free season	13			9				
	MEDIANS		COEFF. of DISP.		DEVIATIO N FACTOR		SIGNIFICAN CE COUNT	
		Post		Post		C.D.	Medians	C.D.
Parameter Group #1								
October	13							
November	17							
December	19							
January	20							011011
February	23							
March	23			0.3431				
April	23.5							
May	22					0.7778		
June	18							
July	14			0.5355				
August	9.3			0.3313				
September	14.5	10.63	0.8121	0.6918	0.2672	0.1481	0.4535	0.7267

MEDIANS		COEFF. of DISP.		DEVIATION FACTOR		SIGNIFICANC E COUNT		
Pre	Post		Post	Medians	C.D.		C.D.	
Parameter Group #2								
1-day minimum	7.3	6.95	0.6986	0.5108	0.04795	0.2689	0.9039	0.5445
3-day minimum	7.467	7.683	0.7411	0.4805	0.02902	0.3516	0.9029	0.4384
7-day minimum	7.571	8.721	0.7642	0.4795	0.1519	0.3725	0.5666	0.3473
30-day minimum	9.137	10.8	0.8699	0.5344	0.1824	0.3857	0.6366	0.3223
90-day minimum	14.83	20.47	0.7968	0.5643	0.3809	0.2918	0.2833	0.4705
1-day maximum	398	548.5	0.9183	0.8409	0.3781	0.0843	0.1772	0.8749
3-day maximum	178	300	0.8624	0.5831	0.6854	0.3239	0.03003	0.5916
7-day maximum	95.71	160.8	0.7037	0.526	0.6799	0.2526	0	0.6336
30-day maximum	45.87	66.33	0.6938	0.3494	0.4462	0.4965	0.1091	0.2302
90-day maximum	31.44	41.08	0.5668	0.5251	0.3065	0.07357	0.1351	0.9479
Number of zero days	0	0	0	0				
Base flow index	0.3663	0.2581	0.2299	0.3849	0.2953	0.6738	0	0.2102
Parameter Group #3								
Date of minimum	266	263	0.2077	0.06011	0.01639	0.7105	0.8398	0.3744
Date of maximum	43	301.5	0.4549	0.3463	0.5874	0.2387	0.4505	0.3343
Parameter Group #4								
Low pulse count	15	8	0.7	0.2813	0.4667	0.5982	0.2653	0.1321
Low pulse duration	2	3.25	1.75	1.423	0.625	0.1868	0.08509	0.7708
High pulse count	29	32	0.5345	0.2891	0.1034	0.4592	0.4124	0.3684
High pulse duration	2	2	0.5	0	0	1	0	0.3403
Low Pulse Threshold	14							
High Pulse Threshold	26							



CONSULTING ENGINEERS

Inspired Solutions, Improving Lives

Data

- Hydrologic data
 - 14 USGS Stream Gages
 - 5 year collection periods
 - Helps eliminate outliers
 - 1984-1988 Early urbanization stage (1986)
 - 2003-2007 Post urbanization stage (2005)
- Stream Catchments
 - DNR data
- Urbanization
 - Impervious surface coverage
 - Image Classification
 - Landsat TM and ETM+ (30m)
 - 1986 and 2005

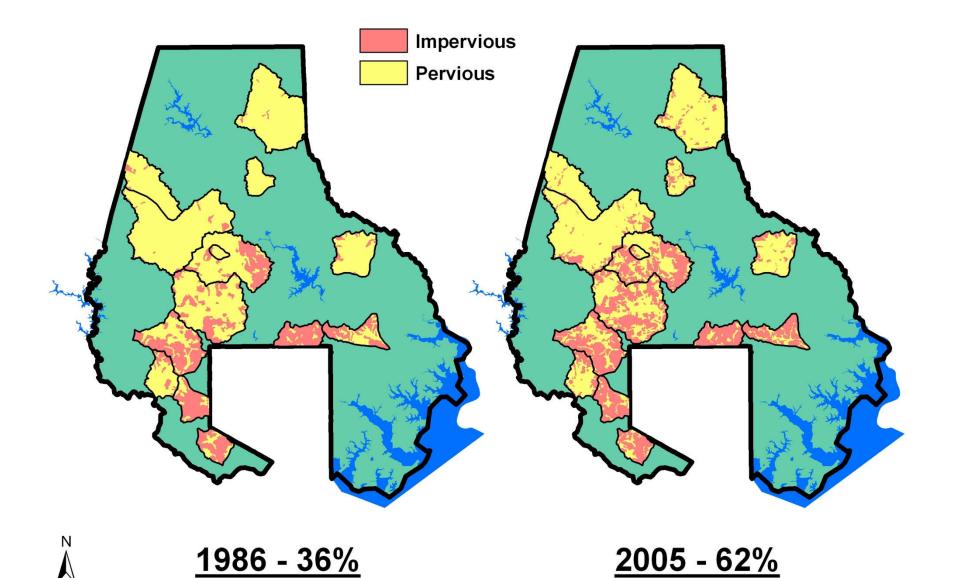
1	BEAVERDAM RUN AT COCKEYSVILLE, MD
2	DEAD RUN AT FRANKLINTOWN, MD
3	EAST BRANCH HERBERT RUN AT ARBUTUS, MD
4	GUNPOWDER FALLS AT GLENCOE, MD
5	GWYNNS FALLS AT VILLA NOVA, MD
6	JONES FALLS AT SORRENTO, MD
7	LITTLE FALLS AT BLUE MOUNT, MD
8	LONG GREEN CREEK AT GLEN ARM, MD
9	PATAPSCO RIVER AT HOLLOFIELD, MD
10	PINEY RUN AT DOVER, MD
11	POND BRANCH AT OREGON RIDGE, MD
12	WEST BRANCH HERRING RUN AT IDLEWYLDE, MD
13	WESTERN RUN AT WESTERN RUN, MD
14	WHITEMARSH RUN AT WHITE MARSH, MD

Inspired Solutions, Improving Lives

Methods

- Flood Vulnerability
 - Fluctuation and flashiness
 - IHA Data
 - Range between average min and max flow
 - 3 and 7 day averages
 - Ex. 10cfs (min) and 40cfs = range of 30cfs
 - Variable
 - Percent change in range from 1986 2005
 - ex. 20cfs ('86 range) to 30cfs ('05 range) = 50% increase

Hydrologic Range Increase							
Gage Site	<u>1986 3 Day</u> <u>Min</u>	<u>1986 3 Day</u> <u>Max</u>	<u>2005 3 Day</u> <u>Min</u>	<u>2005 3 Day</u> <u>Max</u>	<u>1986 3 Day</u> <u>Range</u>	<u>2005 3 Day</u> <u>Range</u>	<u>3 Day %</u>
BEAVERDAM RUN AT COCKEYSVILLE, MD	7.467	178	7.683	300	170.533	292.317	71.41%
DEAD RUN AT FRANKLINTOWN, MD	0.6267	53	0.47	93.6	52.3733	93.13	77.82%
EAST BRANCH HERBERT RUN AT ARBUTUS, MD	0.36	31.23		34.43	30.87		10.04%
GUNPOWDER FALLS AT GLENCOE, MD	53.83	307.6		493	253.77		54.99%
GWYNNS FALLS AT VILLA NOVA, MD	3.9	281.8	24	449.3	277.9	425.3	53.04%
JONES FALLS AT SORRENTO, MD	5.267	150	5.3	264.2	144.733	258.9	78.88%
LITTLE FALLS AT BLUE MOUNT, MD	16.33	280.8	22.17	380.3	264.47	358.13	35.41%
LONG GREEN CREEK AT GLEN ARM, MD	2.2	52.33	2.533	104.2	50.13	101.667	102.81%
PATAPSCO RIVER AT HOLLOFIELD, MD	14.67	701.3	21.67	1472	686.63	1450.33	111.22%
PINEY RUN AT DOVER, MD	3.933	98.83	6.1	129	94.897	122.9	29.51%
POND BRANCH AT OREGON RIDGE, MD	0.01	0.3533	0.05083	0.5783	0.3433	0.52747	53.65%
WEST BRANCH HERRING RUN AT IDLEWYLDE, MD	0.1767	19.38	0.1783	22.08	19.2033	21.9017	14.05%
WESTERN RUN AT WESTERN RUN, MD	13.83	364.2	21.33	492.8	350.37	471.47	34.56%
WHITEMARSH RUN AT WHITE MARSH, MD	0.5617	113.2	0.5117	180.7	112.6383	180.1883	59.97%

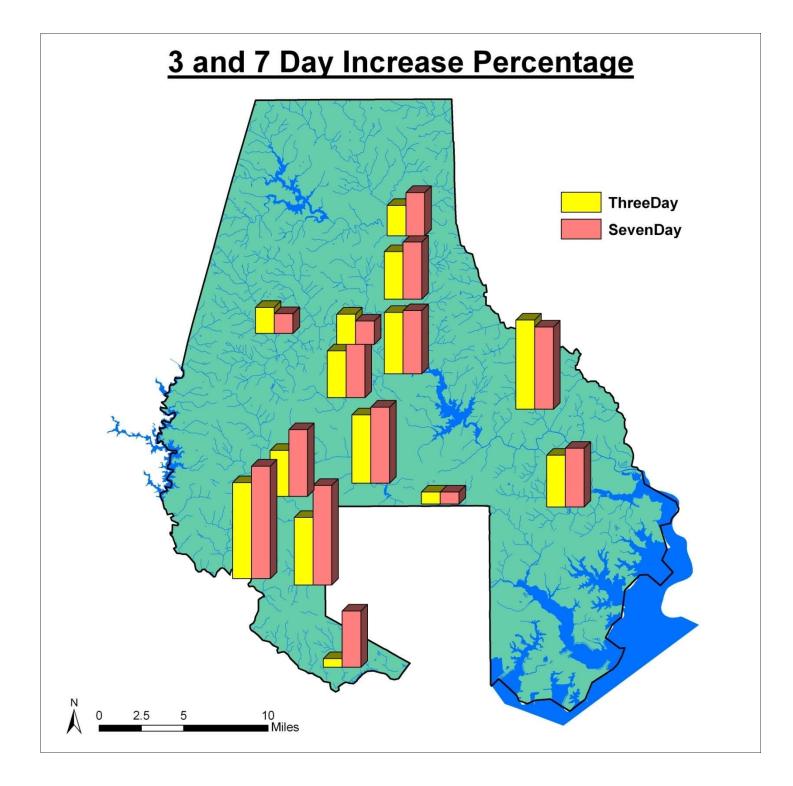


Methods Cont'd

- Urbanization
 - ISC area per stream catchment
 - Contributes directly to stream gage
 - Variable
 - Percent change in ISC
 - Based on total area
 - New ISC area / catchment area

Increased ISC (m ²)					
<u>Catchment/Gage</u>	<u>Total Area</u>	<u>1986 ISC</u>	<u>2005 ISC</u>	ISC Difference	<u>New ISC</u>
BEAVERDAM RUN AT COCKEYSVILLE, MD	54625836.09	17538010.11	29408122.62	11870112.51	68%
DEAD RUN AT FRANKLINTOWN, MD	16834878.71	13134682.20	13917317.38	782635.18	5%
EAST BRANCH HERBERT RUN AT ARBUTUS, MD	14545255.66	10733837.69	10555637.11	-178200.57	-1%
GUNPOWDER FALLS AT GLENCOE, MD	12244537.63	359347.72	3521866.32	3162518.59	26%
GWYNNS FALLS AT VILLA NOVA, MD	38963516.98	23664872.94	27099583.35	3434710.41	9%
JONES FALLS AT SORRENTO, MD	65685325.58	18040763.11	33697899.47	15657136.36	24%
LITTLE FALLS AT BLUE MOUNT, MD	61614197.97	1111182.29	5666943.41	4555761.12	7%
LONG GREEN CREEK AT GLEN ARM, MD	26987917.27	2721148.18	5321731.18	2600583.00	10%
PATAPSCO RIVER AT HOLLOFIELD, MD	18205830.39	4180658.96	6470472.60	2289813.64	13%
PINEY RUN AT DOVER, MD	30030423.53	1245751.74	1283443.04	37691.31	0%
POND BRANCH AT OREGON RIDGE, MD	2964725.691	371876.07	917020.25	545144.18	18%
WEST BRANCH HERRING RUN AT IDLEWYLDE, MD	16065911.08	14731262.35	14082947.15	-648315.20	-4%
WESTERN RUN AT WESTERN RUN, MD	87370787.78	3069994.74	11027540.07	7957545.33	9%
WHITEMARSH RUN AT WHITE MARSH, MD	18672257.81	10779363.35	14602754.31	3823390.96	20%

Impervious Surface Coverage

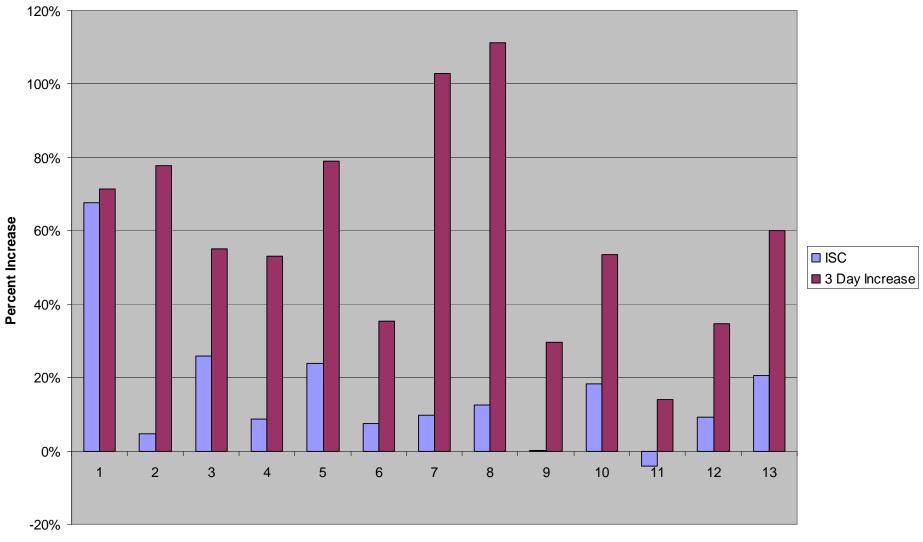

CONSULTING ENGINEERS

Inspired Solutions, Improving Lives

Results

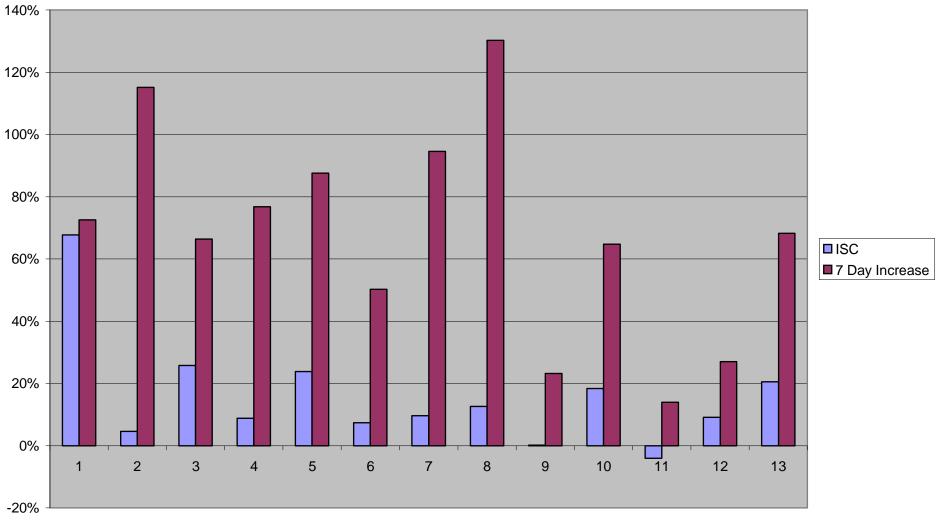
- Flood Vulnerability
 - All streams had an increase in both 3 and 7 day ranges (min and max averages)
 - Highest 3 and 7 day increase
 - Patapsco River at Hollofied
 - 111% and 130%
 - Lowest 3 day increase
 - E. Branch Herbert Run at Arbutus
 - 10%
 - Lowest 7 day increase
 - W. Branch Herring Run at Idlewylde
 - 14%

Streamflow Range Increase		
<u>Gage Site</u>	<u>3 Day %</u>	<u>7 Day %</u>
BEAVERDAM RUN AT COCKEYSVILLE, MD	71.41%	72.54%
DEAD RUN AT FRANKLINTOWN, MD	77.82%	115.13%
EAST BRANCH HERBERT RUN AT ARBUTUS, MD	10.04%	64.66%
GUNPOWDER FALLS AT GLENCOE, MD	54.99%	66.39%
GWYNNS FALLS AT VILLA NOVA, MD	53.04%	76.76%
JONES FALLS AT SORRENTO, MD	78.88%	87.57%
LITTLE FALLS AT BLUE MOUNT, MD	35.41%	50.30%
LONG GREEN CREEK AT GLEN ARM, MD	102.81%	94.52%
PATAPSCO RIVER AT HOLLOFIELD, MD	111.22%	130.19%
PINEY RUN AT DOVER, MD	29.51%	23.21%
POND BRANCH AT OREGON RIDGE, MD	53.65%	64.79%
WEST BRANCH HERRING RUN AT IDLEWYLDE, MD	14.05%	13.98%
WESTERN RUN AT WESTERN RUN, MD	34.56%	27.01%
WHITEMARSH RUN AT WHITE MARSH, MD	59.97%	68.26%



Results Cont'd

- Urbanization
 - Increased ISC
 - 12 out of 14 catchments
 - Highest Increase:
 - Beaver Dam Run, 68%
 - Decreased ISC
 - 2 of 14 catchments
 - E. Branch Herbert Run, -1%
 - W. Branch Herring Run, -4%


<u>Catchment/Gage</u>	<u>New ISC</u>	<u>3 Day %</u>	<u>7 Day %</u>
BEAVERDAM RUN AT COCKEYSVILLE, MD	68%	71.41%	72.54%
DEAD RUN AT FRANKLINTOWN, MD	5%	77.82%	115.13%
EAST BRANCH HERBERT RUN AT ARBUTUS, MD	-1%	10.04%	64.66%
GUNPOWDER FALLS AT GLENCOE, MD	26%	54.99%	66.39%
GWYNNS FALLS AT VILLA NOVA, MD	9%	53.04%	76.76%
JONES FALLS AT SORRENTO, MD	24%	78.88%	87.57%
LITTLE FALLS AT BLUE MOUNT, MD	7%	35.41%	50.30%
LONG GREEN CREEK AT GLEN ARM, MD	10%	102.81%	94.52%
PATAPSCO RIVER AT HOLLOFIELD, MD	13%	111.22%	130.19%
PINEY RUN AT DOVER, MD	0%	29.51%	23.21%
POND BRANCH AT OREGON RIDGE, MD	18%	53.65%	64.79%
WEST BRANCH HERRING RUN AT IDLEWYLDE, MD	-4%	14.05%	13.98%
WESTERN RUN AT WESTERN RUN, MD	9%	34.56%	27.01%
WHITEMARSH RUN AT WHITE MARSH, MD	20%	59.97%	68.26%

ISC and 3 Day Increase

Stream gage / Catchment

ISC and 7 Day Increase

Catchment / Stream Gage

Correlation Results

- 3 Day Correlation .3767
- 7 Day Correlation .2189

Conclusions

- Increased flood risk from 1985 2005
 - Increased flashiness and fluctuation
- Increased urbanization
 - ISC
 - 12 of 14 catchments
- Correlation
 - Weak correlation between urbanization (ISC) and flood risk

Conclusions Cont'd

- IHA
 - Is effective for demonstrating hydrologic patterns
 - Results do show a significant change in Baltimore county stream flow
 - However, not necessarily due to urbanization
 - And the amount of urbanization

Inspired Solutions, Improving Lives

Discussion

- USGS Stream Data
 - Convenient and thorough
 - Limited data for time studies
- Urbanization
 - ISC accurate indicator
 - Image classification
 - Satisfactory for this size study
 - Higher resolution?
 - Better accuracy and specific studies
 - Data availability

Inspired Solutions, Improving Lives

Discussion Cont'd

- IHA
 - Useful for various research
 - Many variables and statistics
 - Ease and compatibility
 - Many variables for other research
 - Take results with discretion
 - Meteorological events ex. droughts
 - Controlled flows and Releases?
 - Dams?

CONSULTING ENGINEERS

Inspired Solutions, Improving Lives

Questions or Suggestions