Coastal Hazard Analyses and DFIRM Update For Maryland

FEMA Region III

Robin Danforth – FEMA Region III Jeff Gangai – RAMPP Heather Zhao– RAMPP Jeff Hanson – USACE/ERDC RiskMAP

Increasing Resilience Together

Introduction

- State of MD Effective Coastal Studies
- Why a coastal restudy is needed?
- Elements of a Coastal Flood Insurance Study
- Ongoing FEMA Region III Storm Surge Modeling Effort
- Overland Wave Analysis Components
- Preliminary DFIRM schedules
- Outreach Efforts

State of Effective Coastal Study

- Topographic data used for modeling and mapping date back to the Mid-1970's and mid-1980's from USGS maps
- SWELs go back to a 1978 VIMS study for the Chesapeake Bay and Tidal Gage Analysis on the Atlantic Coast.
- Coastal studies date back to late 1970's and early 1980's
- Wave height determined with NAS method.
- Erosion analysis not performed
- Wave setup not accounted for
- Limited WHAFIS and/or wave runup modeling performed

Why a coastal restudy is needed?

- New Guidelines need to be implemented
 - Atlantic Ocean and Gulf of Mexico Guidelines Update (2007)
 - Sheltered Water Report (2008)
 - *PM* 50 *Limit of Moderate Wave Action (LiMWA) (*2008*)*
- To update base data such as topographic dataset and aerial imagery to high resolution products and seamless Digital Elevation Model (DEM)
- To utilize newer coastal hazard methodologies developed during the FEMA Mississippi Coastal Restudy
- To take advantage of higher performance numerical modeling
- To take advantage of improvement in GIS technologies to allow for more accurate FIRMs

Hurricane Isabel Sept 19, 2003 – MD CHWMs

Elements of a Coastal Flood Insurance Study

- BFE on a FIRM includes 4 components:
 - 1. Storm surge stillwater elevation (SWEL)
 - 2. Wave setup (from 2D wave modeling)
 - 3. Wave height above total stillwater elevation
 - 4. Wave runup above storm surge elevation All applied to an eroded beach profile
- The above components are computed through:
 - 1. Terrain processing and profile erosion
 - 2. Storm surge study for SWELs determination
 - 3. Coastal Hazard Analyses

Floodplain boundaries, flood hazard zones and LiMWA are then

Scope of Coastal Surge Analysis Study

• All of Region III coastal counties/cities (Atlantic Ocean Chesapeake Bay, Delaware Bay and their tributaries)

Ongoing FEMA Region III Storm Surge Modeling Effort

- Current stillwater elevations (SWELs) on FIRMs date back to 1973-1986 (few updates made in early-1990s) and were computed using a tidal gage analysis or the VIMS model
- SWELs will be updated for 50 coastal counties covering approx. 2280 miles of shoreline
- State-of-the art modeling setup by using ADCIRC soft coupled with the 2D wave model SWAN
- Obtain updated 10%, 2%, 1% and 0.2% annual chance stillwater elevations, wave setup and wave conditions for nearshore open-coast and back-bay shorelines

Storm Surge Project

US Army Engineer Research and Development Center

Project Status – October 2010

- ✓ Submittal 1 comments received; replies in preparation
 - Study area description
 - DEM, Mesh
 - Modeling approach
 - Storm selection
- ✓ Submittal 2 target 29 October
 - Modeling system validation
 - Hurricanes Ernesto and Isabel
 - Extratropical Storm Ida
- ✓ Production target November 2010 February 2011

oceanweather inc.

Jeff Hanson Region III Storm Surge Project Manager USACE-FRF

Modeling System Validation

Validation Storms

- Hurricane Isabel (SEP 03)
- Hurricane Ernesto (AUG o6)
- Extratropical Storm Ida (Nov 09)

Validation Parameters

- Tides
- Wind speed and direction
- Wave height, period and direction
- Water levels
- High water marks

US Army Engineer Research and Development Center

Hurricane Isabel September 2003

Hurricane Isabel Wind Speeds:

OWI Reconstruction vs. Observations

High Water Marks:

Hurricanes Isabel and Ernesto

Hurricane Isabel September 2003

US Army Engineer Research and Development Center

Circles depict observed high water marks to same color scale as background surge predictions

Coastal Hazard Analyses Components

- Transect layout
- Field Reconnaissance (land use, obstructions, shoreline conditions, structures)
- Starting wave conditions (wave height and period) from 2D wave modeling eliminating the need for limited fetch analysis
- Wave setup from 2D wave modeling
- Primary Frontal Dune (PFD)
- Dune erosion: 540 sqft rule
- Bluffs erosion
- WHAFIS modeling for overland wave height computation
- 2% Wave Runup
- All above analyses will be performed with the Coastal GeoRAMPP tool

Transect Placement

Harford County, Proposed Transect Layout for the Havre de Grace area

Field Reconnaissance

Kent County, MD Transect No. 025 - Point No. 001 Team 001 (Jesse Hayden, Joe Faries) 4/30/2010

Location Description : Indiana Ave. Shoreline is a very steep slope with 2ft high riprap at the bottom of the slope. Nearby buildings are all atop the slope, but shoreline protection is not continuous.

Point Type : N/A

Latitude, Longitude (decimal degrees): 39.23345, -76.23117

Building Description : Buildings are on grade at elevation of cliff, which is 20ft+.

Vegetation Description : Mixed forest vegetation, with 6 inch diameters, 50 feet avera

Marsh Description :

Coast Description : Cliff, Rocky, Vegetated

Fetch Description : Open Fetch

Photo Type : Offshore Direction & Description : Direction: 315 degrees

Photo Type : Left Direction & Description : Direction: 20 degrees

Photographs and Descriptions

Photo Type : Onshore Direction & Description : Direction: 115 degrees

Photo Type : Right Direction & Description : Direction: 200 degrees

Development of a Seamless Digital Elevation Model (DEM)

- Topo and Bathy data collected from USACE
- Shoreline extracted from LiDAR data
- Topo, Bathy and shoreline data are merge to create a seamless DEM
- USACE DEM for surge was generated at a 10 m resolution
- DEMs for DFIRM studies are generated at 3 m resolution to allow more higher modeling and mapping detail.

Example of Kent and Queen Anne's 3m (10ft) seamless DEM

Erosion Analysis

- Dunes:
 - Dune erosion based on the 540 sqft rule
 - Dune retreat
 - Dune removal
 - Primary Frontal Dune (PFD) delineation
- Bluffs, Cliffs:
 - Non-standard erosion based on historic data

Overland Wave Hazard Modeling

- WHAFIS 4.0
 - Profile elevation
 - 1% SWELs
 - Starting wave conditions
 - Wave Setup
 - Obstruction cards (OF, IF, BU, VE, MG)

Wave Runup

- FEMA G&S 2007 requires the use of the 2% runup vs. the mean runup computed prior to 2007
- Mild-sloping beaches, bluffs and cliffs
- Coastal Structures:
 - Will structure survive the 1% event?
 - Is structure certified?
 - Modeling of integral structure vs. fail structure to determine higher hazard
 - Runup on structures limited to 3 ft on top of the structure's crest w/overtopping possible AO Zone
- Methods:
 - Runup 2.0, TAW, ACES, SPM

MD Coastal Overland Wave Height Analysis Status

- Modeling set-up
 - Transect Layout all 17 studies completed
 - Field Reconnaissance 12 studies completed, 5 to be performed 11/2010
 - Obstruction carding 12 studies completed, 5 in progress
 - Topo/bathy /shoreline development 12 studies in progress
- Wave height analysis (waiting on surge results)
 - Starting wave conditions (wave height and period)
 - Wave setup
 - Primary Frontal Dune (PFD)
 - Dune/Bluff erosion
 - WHAFIS modeling for overland wave height computation
 - 2% Wave Runup

Mapping

Limit of Moderate Wave Action ----LiMWA

- FEMA Procedure Memorandum No. 50, 2008
- At present not a regulatory requirement
- No Federal Insurance requirements tied to LiMWA
- CRS benefit for communities requiring VE Zone construction standards in areas defined by LiMWA or areas subject to waves greater than 1.5 ft.

Draft MD Preliminary DFIRM Schedules

- Harford County- 10/29/2011
- Cecil and Baltimore Counties, Baltimore City 11/29/2011
- Talbot, and Caroline Counties 2/28/2012
- Dorchester, Wicomico, Somerset Counties 2/28/2012
- Prince George's County 2/1/2012
- Charles County 3/1/2012
- Worcester County 4/31/2012
- Saint Mary's County 5/15/2012
- Calvert and Queen Anne's Counties 6/1/2012
- Anne Arundel County 7/1/2012
- Kent County 8/1/2012

Coastal Study Outreach Efforts

- Coastal Outreach Strategy
- Outreach meetings
 - Initial outreach (scoping) meetings for each county
 - Regional technical storm surge study meetings
 - Flood study review meetings for some counties
 - Final community meetings for each county
 - Open houses for some counties
- Website <u>www.r3coastal.com</u>

Questions?

