

NOAA Atlas 14 Precipitation-Frequency Estimates for Maryland

Geoff Bonnin

301-713-0640 x103 Geoffrey.Bonnin@noaa.gov

Office of Hydrologic Development NOAA National Weather Service

Maryland Association of Floodplain and Stormwater Managers, October 2009, Linthicum, Maryland

- NOAA Atlas 14 Status
- NOAA Atlas 14 Products
- The Precip Frequency Estimates Have Changed
- Why?
- What About Climate Change?

NOAA Atlas 14 Status

www.nws.noaa.gov/ohd/hdsc

Linthicum, MD Example

Why Are Estimates Different?

Much More Data

Longer period of record
Denser network

Better Statistical Techniques
Better Spatial Interpolation
We Don't Think It's Climate Change

What about Climate Change?

- Impact on PF is small
 - compared with error in estimation
- Climate Models
 - change is small through 50 years (wrt uncertainty of estimates)
 - change is large in 100 years (wrt uncertainty of estimates)
 - large difference between models and between forcings
 - swamps uncertainty and trend
 - downscaling questionable

Climatologists Use Many Subjective Terms – heavy, very heavy, extreme – generally mean 1 -5 year ARI – generally only 24 hour duration

Need Information in Engineering Terminology

TVVP 11/8/2004

Much More Data

 Average Record Length over 60 Years
 over triple

TP49 (2-10 day, 1964)

 360 daily stations for contiguous U.S.

NA14 Vol 2 - 2,846 daily stations Table 4.1.2. Information for daily, hourly datasets through 12/2000 and n-minute datasets through 12/1997.

	Daily	Hourly	N-minute
No. of stations	2846	994	96
Longest record length (data yrs)	126	101	105
(Station ID)	(30-5801)	(36-6889)	(31-9457)
Average record length (data yrs)	63	40	67

Figure 4.1.3. Plot of percentage of total number of daily stations used in NOAA Atlas 14 Volume 2 versus data years.

Better Statistical Techniques

- Regional Analysis Based on L-Moments
 Hosking & Wallis, 1997
- L-Moments; More Robust Estimation
 - choosing distribution function
 - distribution shape
 - less sensitive to outliers
 - Regional Approach
 - common distribution shape per region
 - but estimates are at site
 - pools information from many points
 - reduces uncertainty

Uncertainty Estimates – possible with today's computer power

Better Spatial Interpolation

- Statistical Estimates Are At Points

 observation sites
- Account for High Resolution Spatial Variation
 - terrain, local climate
 - gridded interpolations
 - 30 arc seconds
- PRISM Technology
 - Oregon State University
 PRISM Group

- hybrid statistical-geographic climate mapping
 spatial grids of distribution means for each duration
- Cascade Residual Add-Back (CRAB) – grow spatial patterns across different frequencies • for each duration
 - produce grids for each frequency