2007 MAFSM Conference

Introduction to Low Impact Development and LID Modeling

The Low Impact Development Center, Inc. Robb Lukes, Environmental Engineer Low Impact Development Center www.lowimpactdevelopment.org

Objectives

 Shortcomings of Conventional Site Design and Stormwater Management
 Components of LID
 Modeling LID
 Design Case Studies
 Future Directions

The Problem: Conventional

Site Design

Collect Concentrate Convey Centralized Control

Conventional Controls

Primarily concerned with hydraulic control – reducing peak discharge flow rate Fail to address the increased volume of stormwater generated from development Fail to address the increase in the frequency of erosive runoff events Fail to consider watershed criteria

Reston Watershed Management Planning

Buttermilk off North Shore

Buttermilk off Ring Road

Lawn Soil Compaction

Low Impact Development

Major Components

- 1. Conservation (Watershed and Site Level)
- 2. Minimization (Site Level)
- 3. Strategic Timing (Watershed and Site Level)
- 4. Integrated Management Practices (Site Level) Retain / Detain / Filter / Recharge / Use
- 5. Pollution Prevention Traditional Approaches

1. Conservation Plans / Regulations

- Local Watershed and Conservation Plans
 - Forest (Contiguous and Interior Habitat)
 - Streams (Corridors)
 - Wetlands
 - Habitats
 - Step Slopes
 - Buffers
 - Critical Areas
 - Parks
 - Scenic Areas
 - Trails
 - Shorelines
 - Difficult Soils
 - Ag Lands
 - Minerals

2. Minimize Impacts

Minimize clearing 1 Minimize grading 2 Save A and B soils Limit lot disturbance 2 Soil Amendments 2 **Alternative Surfaces** 2 Reforestation ٧ **Disconnect** 2 Reduce pipes, curb and gutters 2

Reduce impervious surfaces

3. Maintain Time of Concentration and Watershed Patterns

- Open Drainage
- Use green space
- Flatten slopes
- Disperse drainage
- Lengthen flow paths
- Save headwater areas
- Vegetative swales
- Maintain natural flow paths
- Increase distance from streams
- Maximize sheet flow

<u>Storage, Detention & Filtration</u> "LID IMP's"

Uniform Distribution at the Source

- Open drainage swales
- Rain Gardens / Bioretention
- Smaller pipes and culverts
- Small inlets
- Depression storage
- Infiltration
- Rooftop storage
- Pipe storage
- Street storage
- Rain Water Use
- Soil Management

5. Pollution Prevention

30 - 40% Reduction in N&P Kettering Demonstration Project

Maintenance

- Proper use, handling and disposal
 - Individuals
 - Lawn / car / hazardous wastes / reporting / recycling
 - Industry
 - Good house keeping / proper disposal / reuse / spills
 - Business
 - Alternative products / Product liability

Maintenance Cost - \$200 / Year

What's a BMP?

How Does LID Maintain or Restore The Hydrologic Regime?

Creative ways to:

- Maintain / Restore Storage Volume
 - interception, depression, channel
- Maintain / Restore Infiltration Volume
- Maintain / Restore Evaporation Volume
- Maintain / Restore Runoff Volume
- Maintain Flow Paths
- Engineer a site to mimic the natural water cycle functions / relationships

• 11 •

SEA Streets - After Construction 2nd Ave NW - NW 117th St to NW 120th St

Fat Street

Skinny Street with Horizontally Challenged Person

LID is Not A land use or zoning control An either this or that approach Independent of watershed planning "The" Answer LID is A Water Balance Approach to Hydrology A science and unit process based approach Decentralized and Integrated Technology Driven "The" Answer

Low-Impact Development Hydrologic Analysis and Design

Based on NRCS technology, can be applied nationally

- Analysis components use same methods as NRCS
- Designed to meet both storm water quality and quantity requirements

<u>Hydrograpgh Pre/</u> Post Development

Developed Condition, Conventional CN (Higher Peak, More Volume, and Earlier Peak Time)

Existing Condition

Developed- No Controls

<u>Minimize</u> <u>Change in</u> <u>Curve</u> <u>Number</u>

Reduced Q_p

Developed Condition, with LID- CN no Controls.

Reduced Runoff Volume

Existing

Τ

Q

7

_

Reducing Volume

Provide Retention storage so that the runoff volume will be the same as Predevelopment

 A_3

O

A1

Τ

Retention storage needed to reduce the CN to the existing condition = $A_2 + A_3$

Detention Storage

Т

Q

LID Stormwater Models

 EPA Stormwater Management Model (EPA SWMM)
 Source Loading and Management Model (SLAMM)
 Prince George's County BMP Evaluation Module
 Western Washington Hydrology Model (WWHM3) / Bay Area Hydrology Model (BAHM)

EPA Stormwater Management Model (EPA SWMM)

Developer	US EPA; Oregon State U.; Camp, Dresser and McKee (CDM)
Rainfall Modeled	Single Event and Continuous
Watershed Size	Site level to Large Watersheds
Primary Use	Peak Flow, Volume, and Quality
Land Use & Source Area	User defined land uses and source areas
Application to LID	Can be adapted to simulate LID controls, models storage and infiltration processes

Source Loading and Management Model (SLAMM)

Developer	Dr. Robert Pitt, U of Alabama; John Voorhees
Rainfall	Continuous
Watershed Size	Small Watersheds
Land Uses	Residential, Commercial, Industrial, Highway, Institutional, and other Urban
Source Areas	Roofs, Sidewalks, Parking, Landscaped, Streets, Driveways, Alleys, etc.
Primary Use	Runoff Volume and Quality
Application to LID	Infiltration, Wet Ponds, Porous Pavement, Street Sweeping, Biofiltration, Vegetated Swales, Other Urban Control Device

Prince George's County BMP Evaluation Model

Developer	US EPA; Tetra Tech Inc. and Prince George's County		
Rainfall	Continuous		
Watershed Size	Site Level to Small Watersheds		
Land Uses	Low-Medium-High Density Residential, Commercial, Industrial, Forest, and Agriculture		
Source Areas	Impervious or Pervious		
Primary Use	Runoff Quantity and Quality		
Application to LID	Retention and conveyance options can be adapted to simulate various LID practices		

Western Washington Hydrology Model (WWHM3) / Bay Area Hydrology Model (BAHM)

Developer	Washington State Dept. of Ecology; AQUA TERRA Consultants; and Clear Creek Solutions, Inc.	
Rainfall	Continuous	
Watershed Size	Large to Small sites in 19 Counties of Western Washington	
Primary Use	Runoff Quantity (Evapotranspiration, Surface Flow, Interflow, Groundwater Flow)	
Application to LID	Ponds, Infiltration Trenches/Basins, Wetlands, Sand Filter, Gravel Trench Beds, Vaults/Tanks, Swales, Green	

Case Studies used to Demonstrate Models

Suburban Commercial Site

- SWMM
- SLAMM
- Metro West: Dense Urban SiteSWMM
- Village at Watt's Creek: Traditional Neighborhood Development
 - SLAMM
- Oak Creek
 - Prince George's County BMP Evaluation Model

Typical Suburban Commercial Site

 Existing: Wooded
 Proposed: 4.0 Acre Commercial Site: 2.25 Acres of Impervious Cover, and 1.75 Acres of Landscaping

Location: Walnut Creek, CA

Suburban Commercial Site Demonstration Goals

This site represents a small office park, retail, or other commercial project common to green field and fringe development. Numerous LID options are available for this type of development, including: swales, bioretention, permeable pavements, cisterns, and flow through planters.

Suburban Commercial Site Modeling Objectives

 Maintain Pre-Development Peak Flows
 Reduce, Treat, and Retain Site Pollutants
 Groundwater Recharge
 Size Best Management Practices to Meet California Stormwater Standards

Suburban Commercial Site LID Strategy Selected

Source Areas	Best Management Practice
Roof (20000 sf) Sidewalk (2700 sf)	Bioretention Cell w/ Underdrain -3 ft of media depth -0.5 ft of surface storage depth
Parking Lot and Loading Area (70,000 sf)	Permeable Pavement -15000 sf, located in outer parking spaces -2.5 ft of aggregate depth Grassed Swale -4 ft bottom width
Landscaping	Maintain Native Soil Structure Avoid Compaction Deep Soil Aeration

Suburban Commercial Site Contra Costa IMP Sizing Calculator

- To meet Contra Costa County technical requirements for flow and treatment the following IMP sizes were calculated:
 - Bioretention cell must be sized to 1832 sf w/ underdrain
 - 420 linear ft of vegetated swales to treat and retain permeable /impervious parking lot.
- IMP design criteria are stated in Appendix C of the Contra Costa County Stormwater C.3 Guidebook

Suburban Commercial Site Modeling Results

Rainfall Data Used: Walnut Creek, CA Rain Gage 1997 (total of 21.5")

	SWMM			SLAMM
	Evapotrans. (acre-ft)	Infiltration (acre-ft)	Runoff (acre-ft)	Runoff (acre-ft)
oped	0.11	4.29	0.08	0.25
eloped	0.37	1.57	3.01	1.77
eloped w/ LID	0.31	3.65	0.62	0.44
in Runoff w/ LID			79%	75%

Choosing SWMM or SLAMM

SWMM

- Goals include: flow routing, peak flow, volume, and pollutant loads
- Complex site, many source area land types
- Inputs for BMP performance equations are available
- If input data is accurate and detailed, Good for design

SLAMM

- Goals include: runoff
 volumes & pollutant loads
- Site has typical landuses
- Standard BMPs, including swales and street sweeping are used
- Best for planning analysis, comparing scenarios

Metro West Medium to High Density Mixed Use Development Existing: Low Density Residential Proposed: 52 Acre Pedestrian and Transit Oriented Mixed-Use Community: Townhomes, Condominiums, Apartments, Retail, Offices, and Public Spaces Proposed LID: Bioretention, Permeable Pavement, and Green Roofs

Metro West Demonstration Goals

Source: Pulte Homes Corporation, Inc.

A high density development like Metro West may reduce the overall footprint of development, but it is at an extremely high density that will result in high runoff volume and peak rates and concentrated pollutant loads. Modeling will show that strategically placed and integrated best management practices will reduce or eliminate the need for large stormwater infrastructure.

Metro West Modeling Objectives

 Maintain Annual Load (Volume, Pollutants)
 Manage Peak Storm Events (2-, 10-, and 100yr. 24-hour)

Infrastructure Requirements per design manual and physical limitations

BMP Sizing based on current regulations

Metro West SWMM Runoff Volume Results

Rainfall Data Used: 1992 Washington Dulles Intl. Rain Gage (total of 41.26")

Pre-Developed	6.2
Existing	24.2
Post-Developed w/ SWM	76.4
Post-Developed w/ SWM & LID	58.5
Reduction in Runoff w/ LID	23%

Runoff

(acre-ft)

Metro West SWMM Peak Discharge Results for a **2yr-24hr** storm

Condition		Areas A (cfs)	Area B (cfs)	Area C (cfs)
Without LID	Inflow	100.5	74.4	48.8
	Outflow	9.5	20.8	11.6
With LID	Inflow	84.0	61.0	36.7
	Outflow	8.5	16.8	6.6
% Reduction	in	11%	19%	43%
Outflow w/ L	D			

Village at Watt's Creek Traditional Neighborhood Development (TND)

 55 acre site consiting of mixed-use buildings, townhomes, two-family, single family homes on small lots

 Other features, alley loaded lots, common green space, narrow and pedestrian friendly streets

Village at Watt's Creek LID Options

 Rain Barrels
 Bioretention Cells
 Permeable Driveways/Alleys
 Street Planters

Village at Watt's Creek The LID Scenarios

Scenario	Catchbasin With Sumps	Residential Downspout Disconnection	Residential Bioretention Cells	Residential Rain Barrels	Permeable Pavement for Alleys and Driveways	Street Bioretention Planters
No BMPs	\checkmark					
#1 – All BMPs	✓	~	✓	~	~	~
#2 – Bio. Cells	\checkmark	\checkmark	\checkmark			
#3 – Rain Barrels	\checkmark	\checkmark		\checkmark		
#4 – Permeable Pvt.	\checkmark	\checkmark			\checkmark	
#5 – Street Planters	\checkmark	\checkmark				\checkmark

Village at Watt's Creek SLAMM Runoff Reduction Results

Runoff Reduction

PG BMP Evaluation Model

Existing Flow & HSPF LAND Pollutant Loads SIMULATION

– Unit-Area Output by Landuse –

SITE-LEVEL LAND/BMP ROUTING

Simulated

BMP DESIGN

– Site Level Design -

Simulated Flow/Water Quality Improvement Cost/Benefit Assessment of LID design

BMP Physical Processes

Possible processes include:

- Evapotranspiration
- Infiltration
- Orifice outflow
- Weir-controlled overflow spillway
- Underdrain outflow
- Bottom slope influence
- Bottom roughness influence
- General loss or decay of pollutant
 - (Due to settling, plant-uptake, volatilization, etc)
- Pollutant filtration through soil medium (Represented with underdrain outflow)

Depending on the design and type of the BMP, any combination of processes may occur during simulation

BMP Class A: Storage/Detention Outflow **Inflow:** Modified Flow & From Land Surface Water Quality SUS 2 6.10 Total States States and States Bottom Orifice Underdrain Outflow Infiltration

BMP Class B: Open Channel

Inflow:

From Land Surface

Evapotranspiration

Open Channel Flow

Outflow:

Modified Flow & Water Quality

Modified Flow & Water Quality

Calibrated BMPs!!!

General Water Quality

$$Mass_2 = Mass_1 \times e^{-kt}$$

Pollutant Removal is a function of the detention time

SMP Retention Loss Rates (1/day)					
BMP ID	SOSLD	SOQUAL (BOD, 5 D			
1	0.510800	1.204000			
2	0.287700	0.356700			
3	2.302600	1.204000			
4	1.204000	1.204000			
5	0.693100	0.356700			
6	0.693100	0.223100			
7	0.105400	0.223100			
•	0.105400	0.000100			
	OK	Cancel			

Underdrain Water Quality

$Mass_{out} = Mass_{in} \times (1 - PCTREM)$

Underdrain percent removal is a function of the soil media

Mass_{in} = **Surface conc** * **underdrain flow**

Underdrain Percent Removal (0-1)				
BMPID	SOSLD	SOQUAL (BOD, 5 D 📃 🔺		
1	0.100000	0.100000		
2	1.000000	0.200000		
3	0.300000	0.300000		
4	0.400000	0.400000		
5	0.500000	0.500000		
6	1.000000	0.600000		
7	0.700000	0.700000		
۹.	0.000000	n. nonnon		
	OK)	Cancel		

G

	Existing Condition	Proposed Condition W/O BMPs	Proposed Condition with BMPs
Flow (CF/year)	20,590	89,203	8,498
Nutrients (lbs/year)	5.68	13.52	0.60
Zinc (Ibs/year)	0.17	1.08	0.01
Sediment (tons/year)	0.35	0.90	0.04

Future Directions

More GIS integration with modeling software Models are adding optimization functions EPA SWMM EPA Study on SWMM BMP Modeling Improvements Interface w/ SLAMM New regional models and tools are linking LID integration with regulatory compliance in a simple and easy to use way.

Conclusions

Continuous hydrologic simulation needed to evaluate stormwater treatment effectiveness and the mitigation of hydromodification.

- The majority of runoff and stormwater pollution come from small storms of 1" or less.
- No runoff model is perfect. A few factors to consider when choosing a model:
 - Goals (flow, quantity, quality)
 - User's Skill Level
 - Project Size and Complexity
 - LID Modeling Capability
 - Available Precipitation Data
 - Cost Optimization

Recognize model limitations in results analysis