


#### The Benefits and Appropriate Use of Base Flood Approximate Shapefiles to Calculate Zone A Base Flood Elevations




Presented by: Jeremy Kirkendall, CFM October 25, 2012



### Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRMs)

- Identify flood hazards
- Zone designations identify the type of flooding or study
- Zone AE based on detailed studies
- Zone A based on approximate studies

NOTES TO USERS



LEGEND











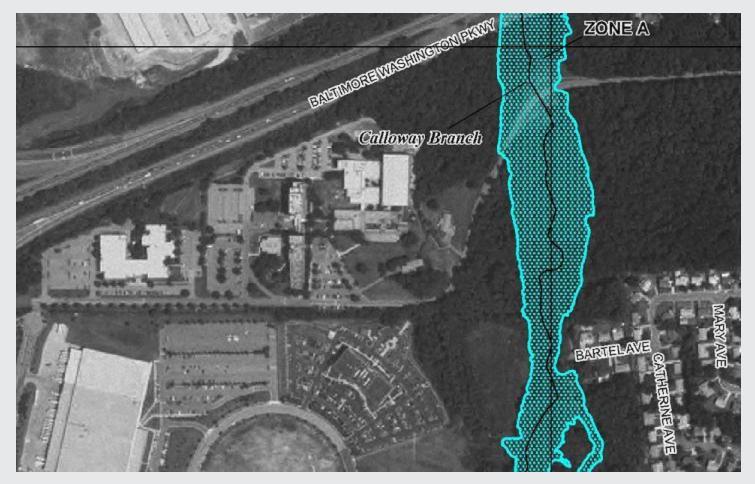
# Base Flood Elevations (BFEs) and Zone A Flooding

#### **Base Flood Elevation**

- The 100 year flood elevation
- 1% chance of occurring any given year
- Zone AE on FIRMs show BFEs

### Zone A Flooding

- Usually found in remote or sparsely populated areas where detailed studies are cost prohibitive
- No BFEs on FIRMs
- Difficult for the general public to determine their BFE



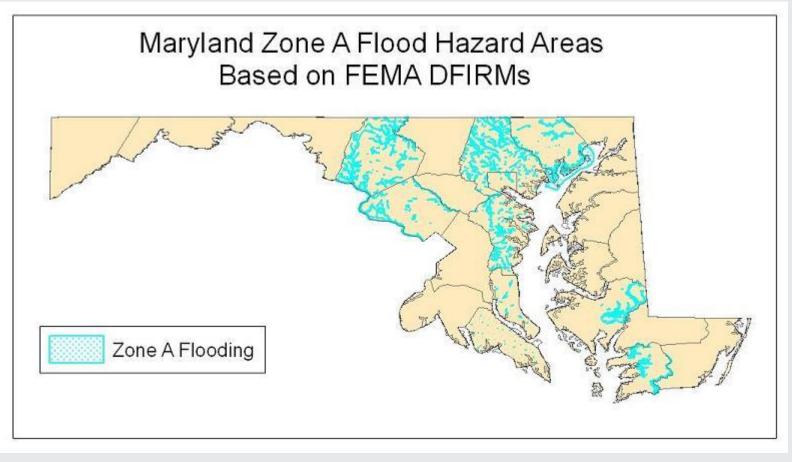







### **Zone A Flooding in Developed Areas**




Zone A flooding still exists in developed areas due to budget limitations or building after the study was done.





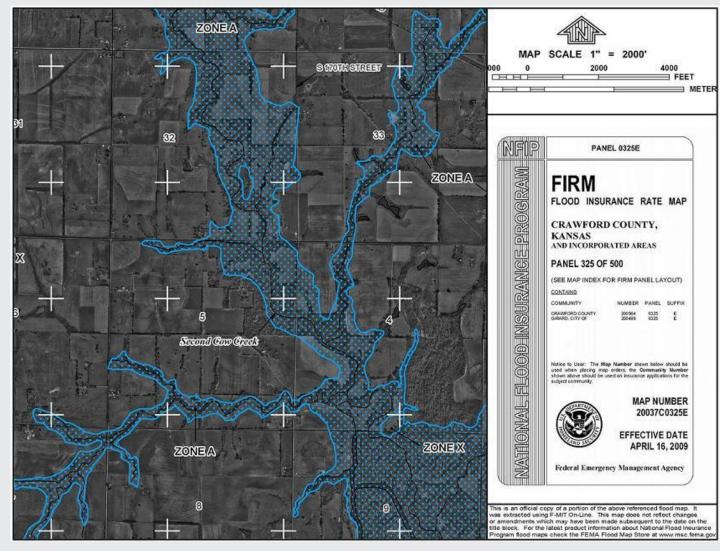






Only 9 counties and 1 city in Maryland currently have DFIRMs









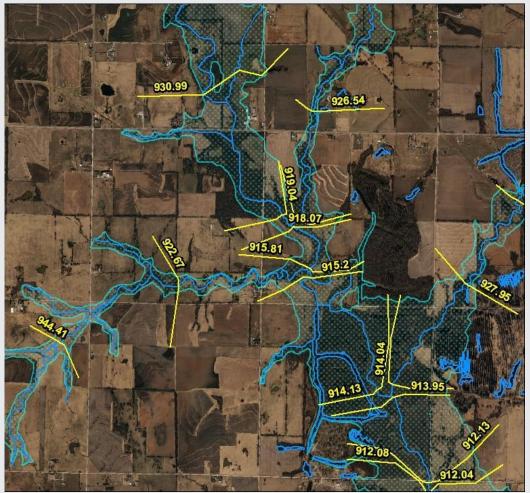



# **Zone A Flooding in Kansas**














# Kansas' Solution to Zone A Flooding: Base Flood Approximate (BFA) Cross Sections

- Not published on FEMA's paper FIRMs
- Only available through Digital Flood Insurance Rate Maps (DFIRMs)









# **Comparison of Study Types**

### **Approximate Studies**

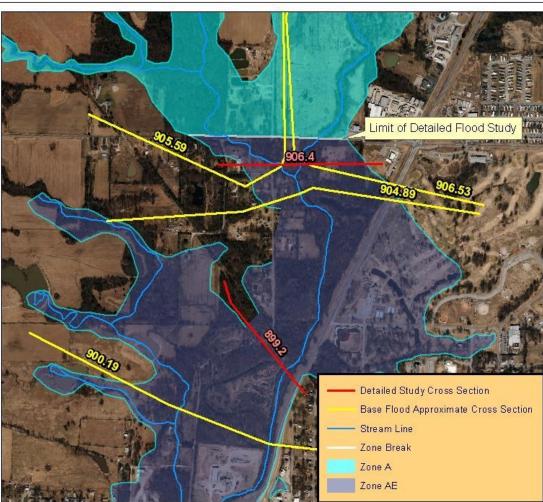
- Potentially cheaper
- Can be quicker to complete
- Remote data acquisition makes studies in remote areas easier to undertake
- Best suited for low population density areas
- If sufficient LiDAR data exists, BFAs may be very easy to implement
- Public must use online map viewer, which can be confusing

### **Detailed Studies**

- More accurate BFEs
- Requires local survey work and cross sections of streams
- Suitable for densely populated areas
- BFEs published on paper FIRMs and easier for general public to access












### BFA Cross Section Accuracy vs. Detailed Studies

- Some BFA studies have slightly overlapped Detailed Studies, allowing BFE comparison
- BFA values are usually close to Detailed Studies
- BFA studies are in sparsely populated areas, so potentially lower accuracy impacts fewer people














ര

>

### FEMA's Flood Map Viewer hazards.fema.gov

- Located under
  Map Viewer tab,
  no direct web
  address
- BFA Cross
  Section values are unlabeled
- Unintuitive interface
- Lengthy process to determine cross section value





## Determining the BFA Cross Section Value using FEMA's Flood Map Viewer

- Select Identify All Visible Layers tool
- Click on cross section to identify
- Click the *Identify* tab
- Expand Cross Section Lines section
- Have experience working with FEMA's DFIRMs in order to even attempt to read the results

| splayed<br>ick on a check bo> | ee a list of map layers that can be |
|-------------------------------|-------------------------------------|
| splayed<br>ick on a check bo> |                                     |
| ick on a check bo>            |                                     |
| L In C L                      | , to odd ar ramana a lavar          |
| ick "Refresh Map"             | button to update the map            |
|                               |                                     |
| Refresh Map                   |                                     |
|                               |                                     |
| egend Iden                    | tify                                |
|                               |                                     |
| DFIRM Panels                  |                                     |
| Political Jurisdi             | ctions                              |
| Cross Section L               | ines                                |
| AREA_UNIT                     | HECTARES                            |
| BED_ELEV                      | -8888                               |
| DFIRM_ID                      | 20037C                              |
| GFID                          |                                     |
| LEN_UNIT                      | FEET                                |
| OBJECTID                      | 141287                              |
| SOURCE_CIT                    | 01213S4_FIS1                        |
| START_ID                      | 01213S4_124                         |
| STREAM_STN                    | 466.154000                          |
| TOP_WIDTH                     | -8888                               |
| VELOCITY                      | -8888                               |
| VEL_UNIT                      | CENTIMETERS / HOUR                  |
| V_DATUM                       | NAVD88                              |
| WSEL_REG                      | 892.68                              |
| WTR_NM                        | Bone Creek                          |
| XS_AREA                       | -8888                               |
| XS_LN_ID                      | 01213S4_2465                        |
| V2_FU                         |                                     |
| XS_LN_TYP                     | NOT LETTERED                        |
| XS_LN_TYP<br>XS_LTR           | NOT LETTERED                        |
| XS_LN_TYP                     | NOT LETTERED                        |

Flood Hazard Zones











## Kansas Department of Agriculture's Digital Floodplain Map Viewer

#### gis.kda.ks.gov/ksfloodplain

💿 🤬 🦽 🗄 Karisas Digital Floodplain Map Help Direct web A la address to Streets Aerial Торо < W STOR AVA E 540th Ave E 540m/ E-1400 Ave viewer **BFA Cross** • Section values are labeled W 530m Ave E 520th Ava E 5300 Ava Map Contents More • responsive Base Flood Approximate Elevations and Special Flood Hazard Area intuitive 0.2 PCTANNUAL CHANCE FLOOE interface E \$20 th AL AE, AH, AO Not • AE, FLOODWAY compatible with all browsers W.5508: Au E 510th Ava 1510.00





# How to build a BFA Template in ESRI's ArcMap

### Required Shapefiles From FEMA DFIRM:

- s\_fld\_haz\_ar.shp Flood Hazard Area
- s\_fld\_haz\_ln.shp Flood Hazard Boundary Lines
- s\_wtr\_ln.shp Stream Centerline (used in developing BFAs, do not use aerials in lieu of this shapefile)
- s\_xs.shp Detailed and Approximate Study Cross Sections
- Additional Data Needed:
- Recent aerial photo to locate structures
- Parcel boundaries in order to determine BFEs for properties





# How to build a BFA Template in ESRI's ArcMap

- Symbology:
  - s\_fld\_haz\_ar.shp by fld\_zone value field
  - s\_fld\_haz\_ln.shp by ln\_typ value field
- Label s\_xs.shp by wsel\_reg field to display BFA values





- When structure or property is located between BFA cross sections, interpolation is used to determine the BFE
- Interpolation formula:
  - BFE = E2 + EL
  - EL = D1((E1-E2)/D2)
  - E1: Upstream BFE
  - E2: Downstream BFE
  - D1: Distance between downstream BFE and upstream edge of structure or property
  - D2: Distance between upstream and downstream BFE









- Identify structure or property and appropriate upstream and downstream cross sections
- All units are in feet
- E1 = 974.56
- E2 = 962.84





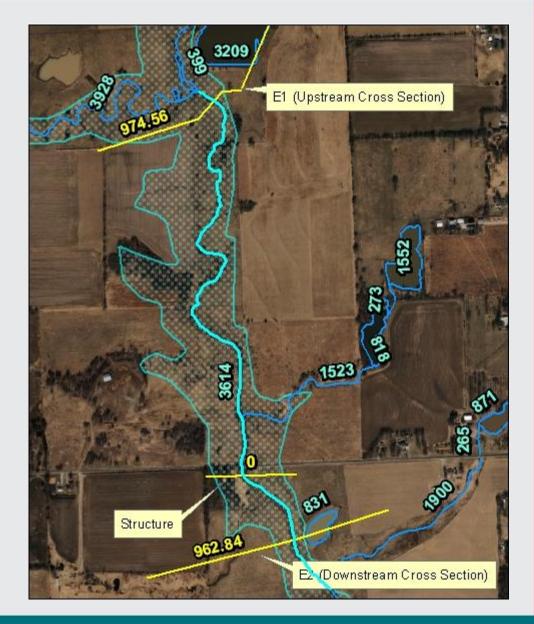






 Create cross section at upstream edge of structure or property using the Sketch Tool in the Editor Toolbar







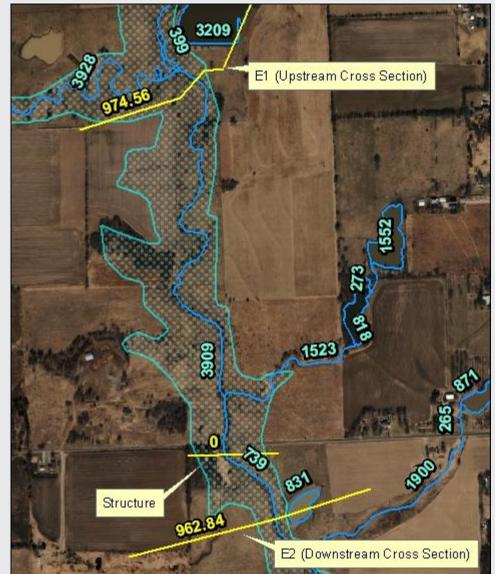





 Select stream line(s)
 between upstream and downstream cross
 sections, merging into 1
 line if necessary












### Calculating a Zone A BFE Steps 4 and 5

- Turn snapping on for s\_xs.shp and s\_wtr\_ln.shp. Use the split tool to split the stream line at the 3 intersections with the upstream, downstream, and your structure/property's cross section
- Calculate the stream line length in feet in the attribute table
- D1 = 739
- D2 = 3909 + 739 = 4648









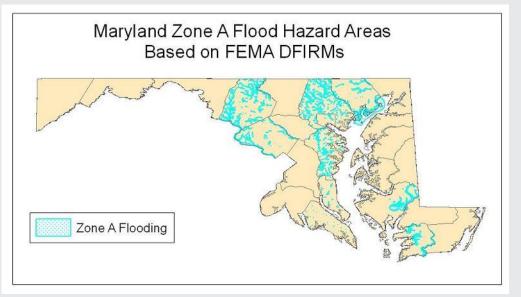


- Interpolate using the formula and enter the new cross section's value into the attribute table
- E1 = 974.56
- E2 = 962.84
- D1 = 739
- D2 = 3909 + 739 = 4648
- EL = 739\*((974.56-962.84)/4648 = 1.86
- BFE = 962.84 + 1.86 = 964.7 feet








# **Limits of BFA Cross Section Interpolation**

- Structure or property is up or downstream of the last BFA Cross
  Section in the study, no second cross section to interpolate between
- Extreme distances between BFA Cross Sections limit usefulness
- If a stream line does not exist between BFA Cross Sections, user must estimate distances using aerial, stream may not be obvious
- If a dam or culvert between cross sections greatly alters the BFE
- Lower accuracy when slope between cross sections changes drastically



# Would Base Flood Approximate Cross Sections Benefit Maryland?

- Maryland has a number of Zone A Flood Hazards
- Some areas of Maryland are experiencing significant development
- BFAs are not very beneficial if extensive development will occur in an area and a detailed study will be required in the near future



- BFAs would be beneficial in areas where development is not likely, especially if acceptable LiDAR data already exists and a BFA study could be easily implemented
- A simple online DFIRM viewer should be created with BFA studies in order to maximize their utilization











# **Questions?**

#### Sources

- FEMA Mapping Information Platform <a href="https://hazards.fema.gov/">https://hazards.fema.gov/</a>
- FEMA Map Service Center <u>http://msc.fema.gov/</u>
- Kansas Department of Agriculture <a href="http://gis.kda.ks.gov/">http://gis.kda.ks.gov/</a>
- Crawford County, Kansas GIS Department
  <a href="http://www.crawfordcountykansas.org/cco.nsf/web/GIS">http://www.crawfordcountykansas.org/cco.nsf/web/GIS</a>
- Geo.Data.gov