An Uncertainty Based Framework for Quantifying the Effects of Climate Change on Extreme Event Flooding in the United States

> Joshua B. Kollat and Joseph R. Kasprzyk AECOM Water Penn State University

> > Wilbert O. Thomas Jr. Michael Baker Jr. Inc.

Acknowledgments

Technical Leads: David Divoky and Arthur C. Miller - AECOM Water

Technical Team: David Markwood, Ray Yost, and Steve Eberbach

FEMA Technical Lead:

Mark Crowell – Contracting Officer's Technical Representative Federal Emergency Management Agency 500 C St., SW, Washington, DC 20004 PH: 202-646-3432; Email: mark.crowell@fema.gov

Primary Contact:

Perry E. Rhodes - Project Manager - AECOM Water 3101 Wilson Blvd, Suite 900 Arlington, VA 22201 PH: 703-682-4914; Email: perry.rhodes@aecom.com

Special Thanks:

Dave Guignet – Maryland Department of the Environment U.S. Army Corp. of Engineers

• Provided detailed RAS analysis for Howard County Maryland

FEMA Study Background

- Analyze impact of climate change on the National Flood Insurance Program
 - Recommended by the GAO
 - Rely on recent published findings (IPCC, CCSP, etc.)
 - Work will be reviewed by an expert panel
 - Objectives:
 - Location and extent of U.S. floodplains
 - Relationship between BFEs and insured properties
 - Economic structure of the NFIP
- This presentation represents preliminary work and is for illustrative purposes only anticipated completion date: March 2010
- This work will not be used by FEMA to revise flood maps it is purely for long term anticipation of effects on the NFIP
- This is not a study of Howard County or of Maryland specifically only an illustration of the methodology

Outline

- Introduction
 - Climate Modeling and Extreme Climate Indicators
- Methodology
 - Regression Analysis
 - Observed and Projections
 - Monte Carlo Sampling for Uncertainty
- Results
 - Projections of Change
 - Impacts on Flooding
- Conclusions and Further Work

Climate Change

- IPCC AR4 (2007) Climate Change Report
- Many climate models comprise the results in this report
- In General:
 - Temperature is increasing and will continue to increase
 - ➤ How much is the question...
 - Precipitation patterns are becoming more intense and this trend will very likely continue

Climate Indicators

- Extreme Climate Indicators:
 - Focus on extremes in climate
 - Can these provide us with information on how extreme event flooding may change?
- Examples: (these are the important ones)
 - FD Number of frost days per year
 - CDD Maximum number of consecutive dry days per year
 - R5D Maximum 5 day rainfall during a given year
 - There are numerous other temperature and precipitation related indices

Extreme Climate Indicators

• Observations:

- Alexander et al. (2006) used extreme climate indicators to examine trends in climate from 1951-2003
- 2223 Temperature gages
- 5948 Precipitation gages
- Developed gridded global data set

• Projections:

- Tebaldi et al. (2006) reported on climate model projections of extreme climate indicators
- A suite of IPCC AR4 model runs provide extreme indices projections
 - > 43 runs from 10 models across 3 scenarios
- We identified 8 modeled indices that were analogous to the observed indices
- 3 of the indices are important in this work

From Alexander et al. (2006)

From Tebaldi et al. (2006)

Methodology

- 1. Perform regression analysis to relate observed extreme indices to observed 1% chance flood
 - Get data to do this from existing gages
- 2. Use this relationship to project changes to the 1% chance flood using projections of extreme indices
 - Use Monte Carlo sampling to quantify uncertainty
- 3. Apply these projections to hydraulic modeling studies
 - Accounting for uncertainty
 - Determine new top widths, W.S. elevations, etc.

Regression Analysis

- Determine Q_{1%} as a function of a variety of other watershed and climate characteristics
- Outcome variable:
 - Q_{1%} 100-yr, 1% chance discharge
- Predictor variables:
 - DA Drainage area
 - SL Average slope
 - ST Storage
 - IA Impervious area (related to population)
 - Extreme Indices: FD, CDD, and R5D

Gage Identification

- Identified 2,370 Urban and Rural Stations from published USGS reports
- This data provided DA, SL, ST, IA, and Existing Q_{1%}

Extreme Indices at Gages

Average Maximum 5 Day Rainfall Per Year from 1951-2003

• Extreme indices at gages were estimated using inverse distance weighting of the observed gridded extreme indices data set

Maryland Regression Equations

• Developed equations for whole U.S. then adjusted for regional bias in Maryland:

 $Q_{1\%}$: (in log_{10} form):

 $Q_{1\%} = 0.29227 + 0.711 (DA) + 0.169 (SL) - 0.329 (ST+1) + 0.180 (IA+1) - 0.205 (FD+1) - 0.176 (CDD+1) + 1.444 (R5D+1)$

- Standard Error: 0.1725 log units or 41.3%
- $R^2 = 0.764$

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.

Projecting Change

- What will likely change?
- Impervious area due to changes in population density
 - Population projections related back to impervious area
 - Population projections consistent with IPCC report
- Extreme indices due to climate change
 - Suite of climate model projections

Population Projections

- Bengtsson et al. (2006) A SRES-based gridded population dataset for 1990-2100
- Assumes a uniform rate of change spatially for the whole U.S.

Impervious Area (Related to Population)

- Population projections available
 - Need to be able to relate these back to impervious area
- Used the Hicks curve (blue) since it is based on a wide range of data
- 1. Determine population based on gage IA
- 2. Project population to some point in time
- 3. Determine IA projection from curve

From Bird et al. (2006) - Estimating Imperious Cover from Regionally Available Data

Climate Projections

- Multiple models and multiple runs provide different pictures
 of change...
 GFDL
- Model extreme indices outputs re-gridded and 20-yr means calculated
- 20-yr Means for 5 Epochs:
 - 2000-2019
 - 2020-2039
 - 2040-2059
 - 2060-2079
 - 2080-2099

Extreme Indices Projections - Changes

 Multiple-model mean projected changes in:

> FD – Number of frost days per year

over modeled existing conditions

Extreme Indices Projections - Changes

 Multiple-model mean projected changes in:

> R5D – Maximum 5 day rainfall per year (mm)

over modeled existing conditions

Monte Carlo Analysis Procedure

Monte Carlo Analysis Procedure

- 1. Determine the Q resulting from modeled existing conditions
- 2. Determine the projected Q for an epoch
- 3. Apply this modeled change in Q as a relative change in the existing observed Q

• This helps correct for model bias

Ultimately, we would like to say:

We estimate that $Q_{1\%}$ will change an average of n% from its present value over the next century.

Results: Projected Changes

Based on 1-million Monte Carlo simulations at each of the 65 gages in Maryland

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.

Distribution of Projected Changes

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.

October 22, 2009

Slide 22

Analysis for Howard County Maryland

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.

October 22, 2009

Slide 23

Projecting Flooding

Existing 1% (100-yr) Water Surface

New 1% (100-yr) Water Surface

Changes in Top Width for Howard County

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.

Changes in Top Width for Howard County

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.

Changes in Top Width for Howard County

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.

Summary

- We used a set of 2,370 gages throughout the U.S. to relate watershed characteristics and extreme climate indices to the existing Q_{1%}
- Using a suite of models, runs, and scenarios, we estimated the large uncertainty in climate and population projections and related this to projections of flooding
- Initial results suggest that future Q_{1%} flooding will become more severe throughout the next century

Future Directions

- More work must be done to further refine this approach
- Scale of study:
 - Although I showed illustrations for Maryland specifically, the scope of the overall study is such that it does not allow for this detailed scale of analysis
 - Future regional studies should focus on regional scale modeling and downscaling techniques
- Improved prediction accuracy of climate models and population models
- Methodologies must be developed within flexible frameworks to allow for the incorporation of new data, predictions, and modeling techniques

Questions - Thank You!

Additional Questions?

Perry E. Rhodes - Project Manager - AECOM Water, 3101 Wilson Blvd, Suite 900 Arlington, VA 22201, PH: 703-682-4914; Email: perry.rhodes@aecom.com Dave Divoky – Technical Lead – AECOM Water, One Midtown Plaza, 1360 Peachtree St. NE, Suite 500, Atlanta, GA 30309, PH: 404-965-9601 x4917; Email: dave.divoky@aecom.com

October 22, 2009

Slide 30