An Uncertainty Based Framework for Quantifying the Effects of Climate Change on Extreme Event Flooding in the United States

Joshua B. Kollat and Joseph R. Kasprzyk
AECOM Water
Penn State University

Wilbert O. Thomas Jr.
Michael Baker Jr. Inc.
Acknowledgments

Technical Leads:
David Divoky and Arthur C. Miller - AECOM Water

Technical Team:
David Markwood, Ray Yost, and Steve Eberbach

FEMA Technical Lead:
Mark Crowell – Contracting Officer’s Technical Representative
Federal Emergency Management Agency
500 C St., SW, Washington, DC 20004
PH: 202-646-3432; Email: mark.crowell@fema.gov

Primary Contact:
Perry E. Rhodes - Project Manager - AECOM Water
3101 Wilson Blvd, Suite 900 Arlington, VA 22201
PH: 703-682-4914; Email: perry.rhodes@aecom.com

Special Thanks:
Dave Guignet – Maryland Department of the Environment
U.S. Army Corp. of Engineers
• Provided detailed RAS analysis for Howard County Maryland
FEMA Study Background

- Analyze impact of climate change on the National Flood Insurance Program
 - Recommended by the GAO
 - Rely on recent published findings (IPCC, CCSP, etc.)
 - Work will be reviewed by an expert panel
 - Objectives:
 - Location and extent of U.S. floodplains
 - Relationship between BFEs and insured properties
 - Economic structure of the NFIP
- This presentation represents preliminary work and is for illustrative purposes only – anticipated completion date: March 2010
- This work will not be used by FEMA to revise flood maps – it is purely for long term anticipation of effects on the NFIP
- This is not a study of Howard County or of Maryland specifically – only an illustration of the methodology
Outline

• Introduction
 – Climate Modeling and Extreme Climate Indicators

• Methodology
 – Regression Analysis
 – Observed and Projections
 – Monte Carlo Sampling for Uncertainty

• Results
 – Projections of Change
 – Impacts on Flooding

• Conclusions and Further Work
Climate Change

- Many climate models comprise the results in this report
- In General:
 - Temperature is increasing and will continue to increase
 ➢ How much is the question…
 - Precipitation patterns are becoming more intense and this trend will very likely continue
Climate Indicators

• Extreme Climate Indicators:
 – Focus on extremes in climate
 – Can these provide us with information on how extreme event flooding may change?

• Examples: (these are the important ones)
 – FD – Number of frost days per year
 – CDD – Maximum number of consecutive dry days per year
 – R5D – Maximum 5 day rainfall during a given year
 – There are numerous other temperature and precipitation related indices
Extreme Climate Indicators

• Observations:
 – *Alexander et al. (2006)* used extreme climate indicators to examine trends in climate from 1951-2003
 – 2223 Temperature gages
 – 5948 Precipitation gages
 – Developed gridded global data set

• Projections:
 – *Tebaldi et al. (2006)* reported on climate model projections of extreme climate indicators
 – A suite of IPCC AR4 model runs provide extreme indices projections
 – 43 runs from 10 models across 3 scenarios
 – We identified 8 modeled indices that were analogous to the observed indices
 – 3 of the indices are important in this work
Methodology

1. Perform regression analysis to relate observed extreme indices to observed 1% chance flood
 - Get data to do this from existing gages

2. Use this relationship to project changes to the 1% chance flood using projections of extreme indices
 - Use Monte Carlo sampling to quantify uncertainty

3. Apply these projections to hydraulic modeling studies
 - Accounting for uncertainty
 - Determine new top widths, W.S. elevations, etc.
Regression Analysis

- Determine $Q_{1\%}$ as a function of a variety of other watershed and climate characteristics

- **Outcome variable:**
 - $Q_{1\%}$ - 100-yr, 1% chance discharge

- **Predictor variables:**
 - DA - Drainage area
 - SL - Average slope
 - ST - Storage
 - IA - Impervious area (related to population)
 - Extreme Indices: FD, CDD, and R5D
• Identified 2,370 Urban and Rural Stations – from published USGS reports
• This data provided DA, SL, ST, IA, and Existing Q$_{1\%}$
Extreme Indices at Gages

Average Maximum 5 Day Rainfall Per Year from 1951-2003

- Extreme indices at gages were estimated using inverse distance weighting of the observed gridded extreme indices data set
Maryland Regression Equations

• Developed equations for whole U.S. then adjusted for regional bias in Maryland:

\[Q_{1\%} : (\text{in } \log_{10} \text{ form}): \]

\[Q_{1\%} = 0.29227 + 0.711 \ (DA) + 0.169 \ (SL) - 0.329 \ (ST+1) + 0.180 \ (IA+1) \]
\[- 0.205 \ (FD+1) - 0.176 \ (CDD+1) + 1.444 \ (R5D+1) \]

– Standard Error: 0.1725 log units or 41.3%
– \(R^2 = 0.764 \)

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.
Projecting Change

• What will likely change?
• Impervious area due to changes in population density
 – Population projections related back to impervious area
 – Population projections consistent with IPCC report
• Extreme indices due to climate change
 – Suite of climate model projections
Population Projections

- **Bengtsson et al. (2006)** – A *SRES-based gridded population dataset for 1990-2100*
- Assumes a uniform rate of change spatially for the whole U.S.
Impervious Area (Related to Population)

- Population projections available
 - Need to be able to relate these back to impervious area

- Used the Hicks curve (blue) since it is based on a wide range of data

1. Determine population based on gage IA
2. Project population to some point in time
3. Determine IA projection from curve

From Bird et al. (2006) – Estimating Imperious Cover from Regionally Available Data
Climate Projections

- Multiple models and multiple runs provide different pictures of change...
- Model extreme indices outputs re-gridded and 20-yr means calculated
- 20-yr Means for 5 Epochs:
 - 2000-2019
 - 2020-2039
 - 2040-2059
 - 2060-2079
 - 2080-2099
Extreme Indices Projections - Changes

- Multiple-model mean projected changes in:

 FD – Number of frost days per year

 over modeled existing conditions
Extreme Indices Projections - Changes

• Multiple-model mean projected changes in:

R5D – Maximum 5 day rainfall per year (mm)

over modeled existing conditions
Monte Carlo Analysis Procedure

Generate $Q_{1\%}$ distribution for each gage in each epoch

Create N input vectors and run them through the regression:

- Vector 1: DA, SL, IA, FD, CDD, R5D
- Vector 2: DA, SL, IA, FD, CDD, R5D
- Vector N: DA, SL, IA, FD, CDD, R5D

- Regression Equation
- Regression Equation

Pr($Q_{1\%}$)

$Q_{1\%}$

Observed Flow (from gage) Mean Projected Flow

- Determined from Population Projections
- Sample from Grab Bag of Model Runs
- Normally distributed standard error noise

- Uncertainty accounted for by sampling from:
 - Multiple models, runs, and scenarios
 - Standard error from the regression equation
Monte Carlo Analysis Procedure

1. Determine the Q resulting from modeled existing conditions
2. Determine the projected Q for an epoch
3. Apply this modeled change in Q as a relative change in the existing observed Q

• This helps correct for model bias

Ultimately, we would like to say:

We estimate that $Q_{1\%}$ will change an average of $n\%$ from its present value over the next century.
Results: Projected Changes

Based on 1-million Monte Carlo simulations at each of the 65 gages in Maryland

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.
Distribution of Projected Changes

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.
Analysis for Howard County Maryland

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.
Projecting Flooding

Existing 1% (100-yr) Water Surface → New 1% (100-yr) Water Surface
Changes in Top Width for Howard County

Projected Top Width Distributions - 2080-2099

Smaller Streams

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.
Changes in Top Width for Howard County

Projected Top Width Distributions - 2080-2099
Medium Streams

Note: This and other findings presented here are provisional and are shown for illustrative purposes only.
Note: This and other findings presented here are provisional and are shown for illustrative purposes only.
Summary

• We used a set of 2,370 gages throughout the U.S. to relate watershed characteristics and extreme climate indices to the existing $Q_{1\%}$

• Using a suite of models, runs, and scenarios, we estimated the large uncertainty in climate and population projections and related this to projections of flooding

• Initial results suggest that future $Q_{1\%}$ flooding will become more severe throughout the next century
Future Directions

• More work must be done to further refine this approach

• Scale of study:
 – Although I showed illustrations for Maryland specifically, the scope of the overall study is such that it does not allow for this detailed scale of analysis
 – Future regional studies should focus on regional scale modeling and downscaling techniques

• Improved prediction accuracy of climate models and population models

• Methodologies must be developed within flexible frameworks to allow for the incorporation of new data, predictions, and modeling techniques
Questions - Thank You!

Additional Questions?
Perry E. Rhodes - Project Manager - AECOM Water, 3101 Wilson Blvd, Suite 900 Arlington, VA 22201, PH: 703-682-4914; Email: perry.rhodes@aecom.com
Dave Divoky – Technical Lead – AECOM Water, One Midtown Plaza, 1360 Peachtree St. NE, Suite 500, Atlanta, GA 30309, PH: 404-965-9601 x4917; Email: dave.divoky@aecom.com