Urban Stormwater Runoff Phosphorus Loading & BMP Treatment Capability

Scott Perry, CPSWQ Imbrium Systems

Co-authors: Brian Lee & Joel Garbon

October 22, 2009

Overview Phosphorus Basics Urban Sources & Loads BMP performance Advanced Removal Mechanism Applications Things to Avoid

Phosphorus Essential nutrient for life Cyclic between Land & Water Limiting nutrient in fresh water Identified in Stormwater as: Particulate-bound phosphorus Dissolved phosphorus (DP)

Problem:

Excess Phosphorus in fresh water causes *Eutrophication* (over enrichment):

Algal blooms
 Micro-toxins ...Toxic Cyanobacteria

Hypoxia --- depletion of Dissolved Oxygen
 Fish kills
 Invasive species

Hampton Roads Bridge Tunnel - AUG. 18, 200 Photo – The Virginia-Pilot / Ryan Henriksen

07/15/2008 06 52 Dobe Point, Potomac Creek – July 2008

Photo - Friends of Stafford Creeks

Additional Eutrophication Issues :

Taste & odor problems water clarity
Fish & aquatic community
Recreational quality
Property values

York River near Gloucester Point, VA - Sept. 9, 2005 Photo by Bill Portlock – Chesapeake Bay Foundation

Phosphorus added

ELA, Fisheries and Oceans Canada

Canadian Experimental Lakes Area # 226: Curtain divided lake Carbon & Nitrogen added to both sides Phosphorus added to lower half

Qingdao, Eastern China`s Shandong province July, 2008

Relative Responsibility for Pollution Loads to the bay

Atmospheric 22%

Agriculture 42%

Urban Suburban 16%

Wastewater 20% Urban Suburban 32% Agriculture 46%

Wastewater 22%

Urban Suburban 24%

Agriculture 76%

Nitrogen

Phosphorus

Sediment

A Health and Restoration Assessment of the Chesapeake Bay and Watershed in 2008

CBP/TRS 299-09 EPA-903-R-09-001 March 2009

www.chesapeakebay.net

Typical Urban Stormwater Phosphorus Sources Fertilizers Waste Water (CSO / Septic) Animal Waste **Development ... Sediment Loss & exposure** Airborne Fallout: Dust, Pollen, Fossil Fuels Vegetation / Leaves Detergents **Hydrocarbons & Lubricants**

Chesapeake Bay Pollen Load from

conoco

Total Phosphorus Stormwater Loading by Land Use

Total Phosphorus Load with Increasing % Tree Canopy

USGS Water-Resources Investigations Report 99–4021

Stormwater Total Phosphorus (TP) Partitioning

Particulate-Bound (PB) Phosphorus

Dissolved Phosphorus (DP) *- less than 0.45-micron*Soluble Reactive Phosphorus (SRP) / Bio-available

"QUICK SUGAR" for Algal Blooms

Stormwater Runoff Phosphorus Partitioning by Land Use

	Residential	Commercial	Industrial	Open Space
Ave. TP EMC (mg/L)	0.41	0.34	0.45	0.59
Ave. DP EMC (mg/L)	0.20	0.18	0.16	0.16
% PB	51 %	47 %	64 %	73 %
% DP	49 %	53 %	36 %	27 %

TP = Particulate-bound phosphorus & Dissolved Phosphorus

DP = Dissolved Phosphorus

PB = Particulate-bound Phosphorus

New York State DEC, 2008

Total Phosphorus (TP) Removal BMP Efficiencies

Center for Watershed Protection, National Pollutant Performance Removal Database version3, Sept. 2007

Typical Urban Stormwater BMPs designed <u>to captures 80% TSS:</u>

Particulate-bound Phosphorus (PB)

> Sediment particle

50% TP --- Associated with

TSS (sediment)

Dissolved Phosphorus (DP)

50% TP --- Dissolved (< 0.45-mircons)

80% TSS capture X 50% (particulatebound phosphorus) = **40% (TP) Removal**

Natural factors impacting **Phosphorus Fate in** Stormwater Runoff & BMPs Water chemistry conditions pH Alkalinity Temperature Redox potential Particle charge Concentration Time / maintenance frequency

Phosphorus Fate Phosphorus speciation will shift Sediments release Phosphorus Particulate-bound (PB) shifts into Dissolved Phosphorus (DP)

Examples

 Impact of acid rain (pH of 7.0 versus 4.5)
 Runoff detained versus diluted (pH & time)
 Denitrificaiton - Anaerobic activity / decaying organics

Stormwater TP Removal Mechanisms & Generalized Capability

Primary Unit	Total Phosphorus (TP)			
Process / Removal Mechanism	Particulate- bound Phosphorus (PB)	Dissolved Phosphorus (DP)		
Sedimentation	Yes	No		
Filtration	Yes	Limited		
Biological Uptake	Limited *assuming vegetative harvesting	Limited *assuming vegetative harvesting		
Sorption	No	Yes		

Sorption

Combination of complex physiochemical interactions;
 Adsorption - surface attachment

Absorption - internal attachment (sponge)

Ion Exchange - displacement of ions (Ca, Mg, Na)
Sorption Capacity --- mg/g

Compared to soils ...

Ion Exchange Capacity --- meq/100g

Ways to increase TP removal & reduce performance variance?

TSS Removal
 (particulate-bound P Removal)
 Focus on Filtration & Infiltration
 Yolume treated

 Prevent Phosphorus Speciation Shift
 Better BMP Design Consideration / Engineering
 Maintenance frequency

Quantifying Sorption Capability for Dissolved Pollutant Removal Isotherm – How much can it hold? Kinetics – How fast can it go in? Breakthrough – How much before it is full? (maintenance) Desorption – Retaining DP ... is the bond strong enough?

Dissolved Phosphorus (DP) Sorption Performance

(T. Wu et al, Stormwater Phosphorus Adsorption on Oxide Coated Media, WEFTEC, 2008)

Media Type (0.5 mm to 10 mm)	Isotherm K _f (mg/g)	Kinetics q _e (mg/g)	Breakthrough Exhaustion (BVs)	Desorption	
Al-oxide Pumice	0.40	1.19	1,800 – 2,700	No	
Al-oxide Waste Aggregate	1.3	0.51	1,450 – 3,600	Νο	
Mod. Activated Alumina	5.7	0.40	< 1	Νο	
Zeolite / Perlite / Carbon (ZPG)	0.05	None	5	Yes	
Perlite	0.002	1.37	< 10	No	
Recycled Tire	0.003	None	< 45	Yes	
Expanded Shale	0.14	0.98	9 - 50	Yes	
Very Finely Graded Medias (< 0.5 mm) with low hydraulic conductivity					
Bioretention Soil	0.18	4.67	50	No	
Concrete Sand	< 0.01	< 0.001	< 5	No	

Amended Sand Filters & Filtration Trenches

Applications

Use Sorption based Media or Material displace part of Sand bed

Applications

Concrete Grid Pavers (CGP) "Turfstone"

Amended Pervious Pavements

Interlocking Pavers

Pervious Pavements

In Joints
Bedding Course
Polishing System

Under Drain PVC

Things to Avoid with "Sorption" Based Materials

Limit use of materials prone to <u>desorption</u>
Organics / Compost / Soils

Test P-index & use as an indicator

Evaluate Materials upfront

Expanded Shale, Recycled Tires, ZPG

Prevent <u>leaching</u> of other Toxics
 i.e - Heavy Metals
 Slag, Iron-based materials, other waste by-products

Summary To address Algal Blooms & Eutrophication

Amend BMPs to be "Best Management Practices" and address DP removal

Questions?

Scott Perry

301-279-8827

sperry@imbriumsystems.com

The Road Ahead: Implementing Environmental Site Design in Maryland

Tom Schueler Chesapeake Stormwater Network

October 22, 2009

Key Themes

- About Chesapeakle Stormwater Network
- The Future of Stormwater: Tommy the Swammi
- Baywide Stormwater Design Specifications
- MD Runoff Reduction Spreadsheet
- Special Stormwater Technical Bulletins
- Baywide Stormwater Training
- Master Stormwater Engineers

Chesapeake Stormwater Network

Nonprofit organized to align the local, state, federal and private sectors to solve the Bay stormwater problem through an independent network of concerned stormwater professionals

www.chesapeakestormwater.net

The innovativeness dimension, as measured by the time at which an individual adopts an innovation or innovations, is continuous. The innovativeness variable is partitioned into five adopter categories by laying off standard deviations (sd) from the average time of adoption (\bar{x}) .

The Future of Stormwater in MD

Tommy the Swammi

Some Future Predictions

Uneven local implementation of new ESD regulations

Rapid changes in practices, technology and compliance tools

More stringent EPA stormwater rules for Chesapeake Bay (or nationally)

More numeric municipal, industrial and construction NPDES permits, with more accountability and enforcement

Local nutrient reduction requirements from Bay TMDL

We have Reached the Clipping Point

The Clipping Point: Emergence of Turf Cover As a Major Bay Ecosystem

TURF COVER, BAY WATERSHED 2000

Method 1: 3.82 million acres Method 2: 3.79 million acres

TURF AS PERCENT OF BAY LAND AREA

Method 1: 9.5% Method 2: 9.5%

COMPARISON TO OTHER BAY LAND USES

Row Crops:	9.2% of
watershed	
Pasture:	7.7%
Hay and Alfalfa:	7.4%
Wetlands:	3.8%

First Annual Bay-wide Stormwater Performance Scorecard 2009

Ten Core Implementation Tools Graded

- 1. Stormwater Permits: Larger Communities
- 2. Stormwater Permits: Smaller Communities
- 3. Updated State Stormwater Regulations
- 4. Updated State Stormwater Manual
- 5. State Outreach to Localities
- 6. Public Stormwater Outreach
- 7. Industrial Stormwater Permits
- 8. Construction Stormwater Permits
- 9. Permit Compliance and Enforcement
- 10. State and Local Stormwater Financing

TABLE 1: BAYWIDE STORMWATER SCORECARD-2009					
Core Programs	DC	MD	PA	VA	WV
Large MS4 Permits	A-	C-	-	D	-
Small MS4 Permits	1	F	D	C+	A
Stormwater Regs	I	B+	I	I	B+
Stormwater Manual	Ι	С-	В	A-	I
MS4 Outreach	В	D	D	B-	B
Public Outreach	A	D+	F	В	Ι
Industrial Permits	Δ	D	D-	B-	D
Construction Permits	B+	C-	D+	C-	D
Permit Enforcement	B+	D	D-	D	D-
Local/ State Financing	A-	<i>C</i> -	Ŀ	C+	D +
OVERALL GRADE	B+	D+	D	C+	С

NPDES Permitting: The gap between wastewater and stormwater

RUNOFF REDUCTION

Runoff reduction (RR) is defined as the total volume reduced through canopy interception, soil infiltration, evaporation, rainfall harvesting, engineered infiltration, extended filtration or evapotranspiration at small sites

MD Runoff Reduction Spreadsheet

1. Post-Development Project & Land Cover Information					
Constants					
Annual Rainfall (inches)	43				
Target Rainfall Event (inches)	1.00				
Phosphorus EMC (mg/L)	0.28				
Target Phosphorus Load (lb/acre/yr)	0.28				
Рј	0.90				
Land Cover (acres)					
	A soils	B Soils	C Soils	D Soils	Totals
Forest/Open Space undisturbed,					
protected forest/open space or	0.0	2.0	4.0		6.0
Managed Turf disturbed, graded for					
yards or other turf to be		6.0	14.0		20.0
Impervious Cover (all soil types)	14.0				14.0
				Total	40.0
Rv Coefficients					
	A soils	B Soils	C Soils	D Soils	
Forest/Open Space	0.02	0.03	0.04	0.05	
Managed Turf	0.15	0.20	0.22	0.25	
Impervious Cover			0.95		

Adapted from VA, but Modified to Conform to MD ESD regs

VA Runoff Reduction Spreadsheet

The VA DCR spreadsheet developed to simplify compliance and has been tested (and revised) on dozens of sites by hundreds of engineers

 Based on New Science on Runoff Coefficients and Runoff Reduction of Practices

 Compliance Tool for Early Concepts and Final Design (although individual practice design still required)

Excellent Tool for Training and Plan Review

 Truly Integrates all Practices Together and Rewards a Treatment Train

Annual Runoff Reduction Rates (%)

Infiltration Bioretention Pervious Pavers Green Roof Dry Swale Rain Tanks/Cisterns 40+ Roof Disconnection 25 to 50 Grass Channel 15 to 30 Dry ED Pond Wet Pond Sand Filter

50 to 90 40 to 80 45 to 75 45 to 60 40 to 60 0 to 15 \mathbf{O} \mathbf{O}

Source: CWP and CSN (2008)

BIORETENTION DESIGN			
LEVEL 1 DESIGN	LEVEL 2 DESIGN		
TV = (Rv)(A)	TV= 1.25 (Rv)(A)		
Filter media at least 24" deep	Filter media at least 36″ deep		
One form of accepted pretreatment	Two or more forms of accepted pretreatment		
At least 75% plant cover	At least 90% plant cover, including trees.		
One cell design	Two cell design		
Underdrain	Infiltration design or underground stone sump		

MD Runoff Reduction Spreadsheet

CSN and CWP expect to release MD version by end of 2009

Will initially calculate ESD treatment volume using MDE woods in good conditions "look up" table.

The spreadsheet then accounts for progressive runoff reduction by different ESD practices from up to five different sub-drainage areas at the site.

Allows plan reviewers that ESD to the MEP has been achieved or not, and quickly test alternative combinations

Also computes curve number reductions for larger storms

Need for New Design Tools

- CSN/CWP released 14 new design specs
- · Focus on better design, installation and maintenance

Our goin to be produced as manyer-bandward specification of the function of the same time longwity, reduce maintenance bunden, and create an attractive amenity – and at the same time drive down the unit cost of treatment. So please give this a careful review, and e-mail your comments to Tom Schuler at <u>waterhedenviryStormal com</u>, or post comments or upload information at che-sapeakestormwater net. This draft has annotations highlighting key issues and design needs. This draft is open until May 15 2008, when a final draft will be prochaced hased on your comments. Thanks in advance for your participation in this important project.

Bioretention of 2

Chesapeake Stormwater Network 3/15/05 1

SOIL RESTORATION BAY-WIDE DESIGN SPECIFICATION

VERSION 1.0 OPEN FOR COMMENT UNTIL JUNE 1, 2008

How You Can Develop the First Soil Restoration Design Spec in the Chesapeake Bay

Our goal is to produce a simple standard sporification that can boost priformane, increase longerity, reduce maintenance burken, and create an attactive anneally — and at the same time drive down the unit cost of toatment. So please give this a caroful review, and --mal your comments to Tom Schueler at <u>watershedury blontail com</u>, or post comments or upload information at chesapeake stom water net. This draft has annotations hyblighting key sisses and design needs. This draft is opn until June 52008, when a final draft will be produced based on your comments. Thanks in advance for your participation in this important project.

Draft Bay-wide Design Specifications

- Rooftop Disconnection
- Filter Strips
- Grass Channels
- Soil Amendments
- Green Roofs
- Rain Tanks/Rainwater Harvesting
- Permeable Pavement
- Infiltration

- Bioretention
 - Urban Bioretention
- Dry Swales
- Filtering Practices
- Constructed Wetlands
 - Wet Swales
- Wet Ponds
- Extended Detention Ponds

Drafts available at CSN website: www.chesapeakestormwater.net

BAY WIDE DESIGN SPEC NO. 6

RAIN TANKS AND CISTERNS

CSN TECHNICAL BULLETIN No. 1

STORMWATER DESIGN GUIDELINES FOR KARST TERRAIN IN THE CHESAPEAKE BAY WATERSHED VERSION 2.0

CSN TECHNICAL BULLETIN No. 2

STORMWATER DESIGN GUIDELINES FOR COASTAL PLAIN TERRAIN IN THE CHESAPEAKE BAY WATERSHED VERSION 2.0

BMP Selection in Coastal Plain

Preferred	Accepted	Discouraged	Prohibited
Constructed Wetland	Sand Filter	Wet ponds	NONE
Shallow Bioretention	Small-scale Infiltration	Dry ED ponds	
Wet Swale	Green Roofs	Grass Channel	
Rain Tanks/Cisterns	Soil Compost Amendments	Large Scale Infiltration	
Shallow Dry Swale			
Roof Disconnection & Filter Strips			
Permeable Pavers			

New and Innovative Sustainable Stormwater Practices for the City

- 1. Green Roofs
- 2. Cisterns and Rain Tanks
- 3. Foundation Planters
- 4. Permeable Pavers
- 5. Expanded Tree Pits
- 6. Regular Bioretention
- 7. Street Bioretention
- 8. Soil Restoration
- 9. Reforestation
- 10. Sand Filters

Designating Stormwater Hotspots

Future status of development determines how much treatment is required, whether runoff can be infiltrated or what on-site pollution prevention practices are needed

A Lot of Change Going On in the Bay States

STATE	Runoff Reduction	Channel Protection	Status
DC	Reduce Runoff 1 st Inch of Rainfall	No	New Regs New Manual
DE	Reduce Runoff from 2.4 inches of rainfall	YES	New Regs New Manual
MD	Reduce Runoff from 1.0 to 2.4 inches of rainfall	YES	New Regs New Manual?
ΡΑ	Reduce Runoff from 1.0 to 2.4 inches of rainfall	YES	2005 Manual
VA	Reduce Runoff from 1.0 to 2.4 inches of rainfall	YES	New Regs New Manual
WV	Reduce runoff from 1st Inch of rainfall	No	New Permit New Manual

Bay-wide Stormwater Training Partnership

• Collaborative Stormwater Training in MD, VA, DC and WV w/ focus on local designers and plan reviewers

\$500,000 NFWF Grant over next 30 months (+
 \$600,000 match)

• MD and DC training coordinated by Chesapeake Stormwater Network

• VA and WV training coordinated by Center for Watershed Protection

• Certificates are awarded for participation (but not certification)

Bay-wide Stormwater Training Partners

- Maryland Assoc. of Floodplain and Stormwater Managers
- American Society of Civil Engineers, Maryland Chapter
- Maryland Association of Soil Conservation Districts
- District of Columbia Dept of Environment
- American Society of Civil Engineers, Virginia Chapter
- Virginia Assoc. of Soil & Water Conservation Districts
- Virginia Department of Conservation Resources
- West Virginia Department of Environmental Protection

Piggyback training, resources, and MSEs

Three Levels of Training for Designers and Plan Reviewers

Basic: Participate in several webcasts on new regulations and practices

Advanced: One-day design charette to apply new tools to real world development and redevelopment sites

Master: Two day training session on special topics and teaching others

Other CSN Priorities in 2010

- Create MS4 Stormwater Managers Exchange
- Technical Bulletins for Stormwater Design in Trout Waters and Ultra-urban Watersheds
- Technical Assistance for MD Critical Area Commission Staff on Stormwater Compliance
- Second Annual Bay-wide Stormwater Partners Retreat and Bay-wide Stormwater Institute
- Stormwater Research Updates

Master Stormwater Engineers

- BAYWIDE Stormwater Partners
- Up-front two day voluntary training commitment
- Get paid \$1,500 for each local design training workshops
- Be eligible to be paid as a local stormwater circuit rider
- Become a Jedi-master to use the force in your own empire
- Marketing and professional development

Webcast Topics

- Implementing Your State's Stormwater Regs
- Utilizing the Runoff Reduction Spreadsheet
- Design of Innovative Practices
 - Bioretention
 - Rainwater harvesting
 - Permeable paver
 - Rooftop disconenctions/soil amendments
 - Others
- Stormwater Design for Special Terrain and Receiving Waters
- Construction Inspection and Maintenance
- OTHER TOPICS DEPENDING ON INPUT/SURVEY

Work Between Now and the End of 2009

- Baseline Survey of Current Design and Review Practices
- Training Needs and Preference Survey
- Initial Class of Master Stormwater Engineers (10 in MD)
- Coordination with States and Professional Societies
- On-line training calendar and registration system

Training During 2010 and 2011

- 10 stormwater webcasts
- 60 one-day stormwater design charettes to teach new methods
- 4 intensive workshops to create 40 master stormwater engineer trainers
- 500 hours of direct on-site technical assistance to requesting local governments
- 20 self-guided, web-based stormwater training modules

