

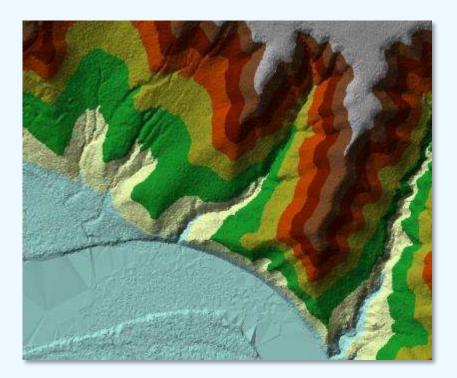
GREENHORNE & O'MARA

CONSULTING ENGINEERS

Inspired Solutions, Improving Lives

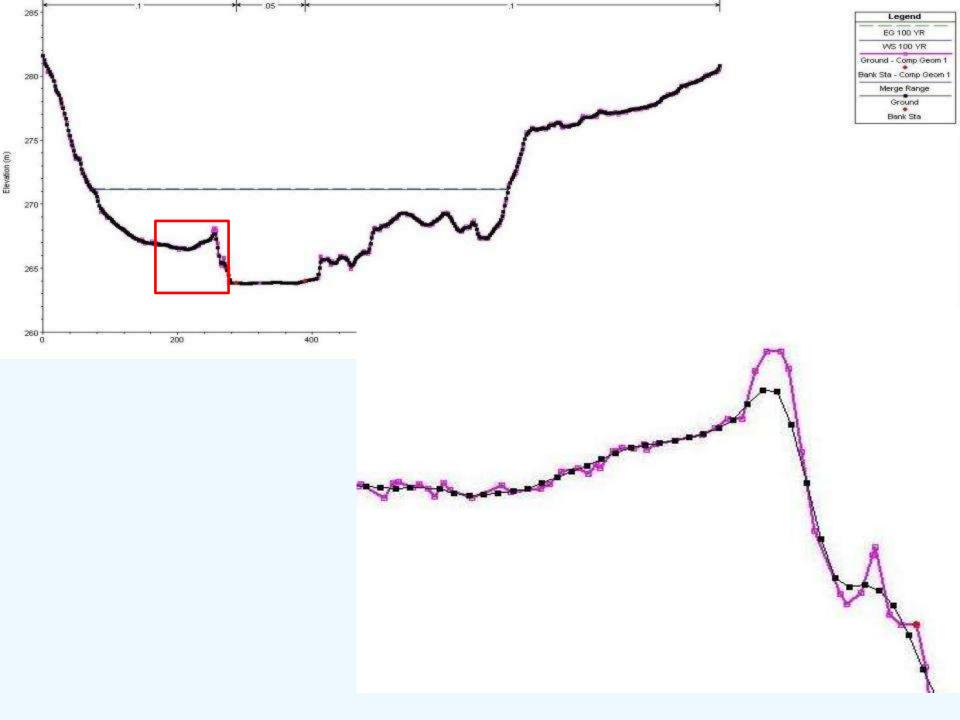
Floodplain Mapping & LiDAR: Can There be Too Much Data?

Presented by:


Virginia Dadds, P.E., CFM, LEED AP Aurore Larson, P.E., CFM Jason Wheatley, GISP

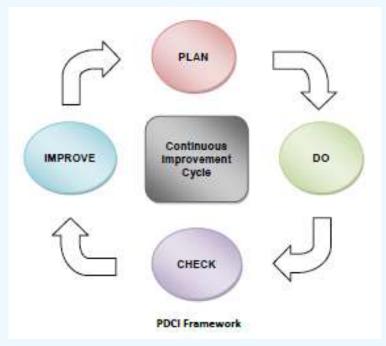
October 21, 2010

LiDAR – the Giant Step Forward



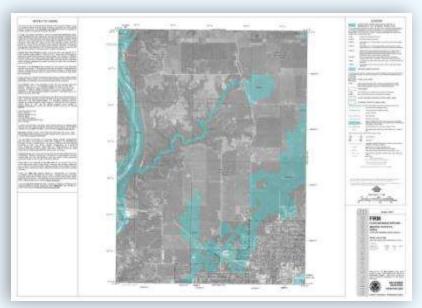
Can there be too many points?

100'x100' LiDAR Grid
File size 2 GB
Frequently corrupted
Long processing times
Difficult to append more data if needed


Bottom Line – Blown Budgets!

Finding a Solution

- Tasked Jason with finding a better way
 - No loss in profile accuracy
 - Floodplain lines must pass checks
 - Overlay solution on full LiDAR products for comparison
 - Fully document the process for all users
 - Process can be improved as needed


Inspiration/Problem Identification

• Map Production

ONAULTING ENGINEERS

Inspired Solutions, Improving Lives YEARS

- Panning/Zooming draw times
 - Several second refresh rates
 - Large vector datasets with excessive detail
- Printing
 - Larger files with longer print processing
- Storage/Serving
 - Large vector datasets
 - Lidar
 - OrthoImagery

• Surface processing

inspired Solutions, Improving Lives MEARS

- Buffer waterways to generate "domain"
- Extract LiDAR groundshot from domain
 - May not have enough coverage
- Construct TIN ground surface for flood extraction
- Studies in FEMA Region 7 Iowa
 - High-resolution LiDAR point files (LAS and XYZI) available from the GeoTREE Iowa LiDAR Mapping Project http://geotree2.geog.uni.edu/lidar/

Region 7 – Iowa LiDAR (Boone County)

• Voluminous data

GREENHORNE & O'MARA

Inspired Solutions, Improving Lives MEARS

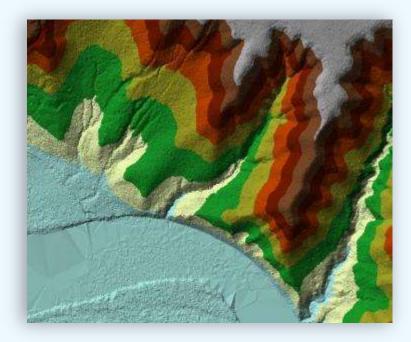
- 1.4m avg. point spacing
- 2.5 Mil groundshot
 points per 4.0 Mil m²
 (approx. 1.5 sq. mi.)
- 400 tiles in county
- Approx. 1 Bil groundshot points in county
- Extremely difficult to process seamless TIN surfaces for larger domains

Goals

- Improve speed
- Storage savings
- Network performance
- Time savings
 - Dedicated to QA/QC
- Effective products
 - Information that is optimized for target scale
 - More representative of real-world features

Optimization

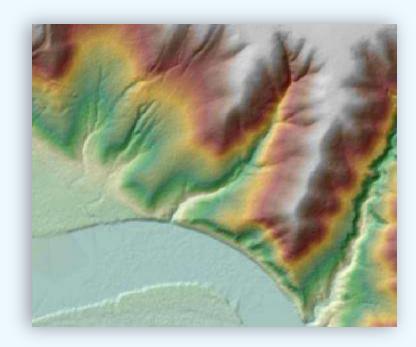
- "Less Is More"
- "Sweet-spotting"
- Improve performance/efficiency of existing and future processes through generalization of mapping inputs/outputs
- "Sweetspot" source data to produce most effective information with least effort

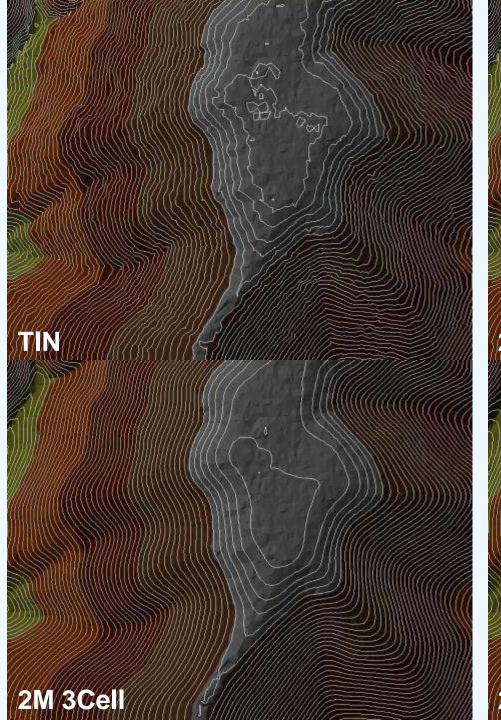

Proposed Solutions

- Generalize Product (vector)
 - Smoothing/Simplifying lines
 - Must meet FEMA DFIRM mapping standards (FBS Audit)
 - Still requires TIN generation
 - TIN extraction not uniform so process is more difficult
- LiDAR Thinning
 - Iowa possesses little relief
 - Still requires more processing/storage to generate TIN
 - Eliminating detail from Raw data
- Raster Elevation Surface
 - Generate GRID(s) (2m cellsize) from raw groundshot
 - Applies point mean to each cell
 - Easy to control generalization
 - Smaller file size
 - County-wide surface

TIN vs. GRID

- Difference in level of detail, or just a difference in interpolation?
- TIN
 - Elevation of each point is preserved
 - Vertical error (+/-7") also preserved
 - Eliminates area from laser pulse (0.5m 1m)
 - Slope/Aspect determined by triangulating three adjacent points
 - Vertices of extraction non-uniform due to varying triangulations
 - Harder to select generalization tolerances
 - Greater uncertainty in sample voids

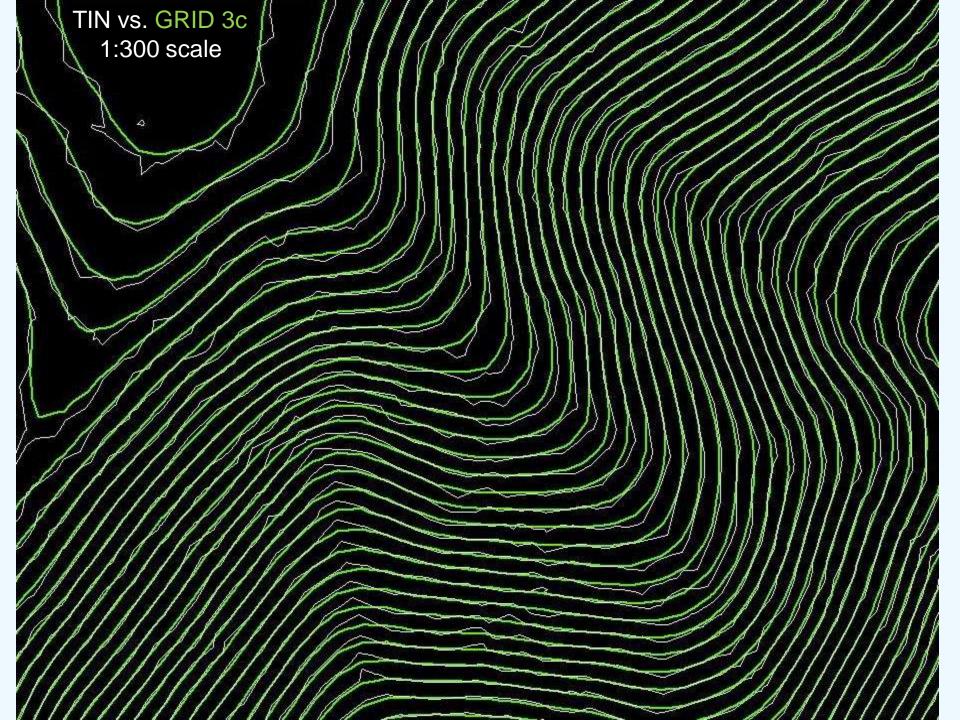




TIN vs. GRID

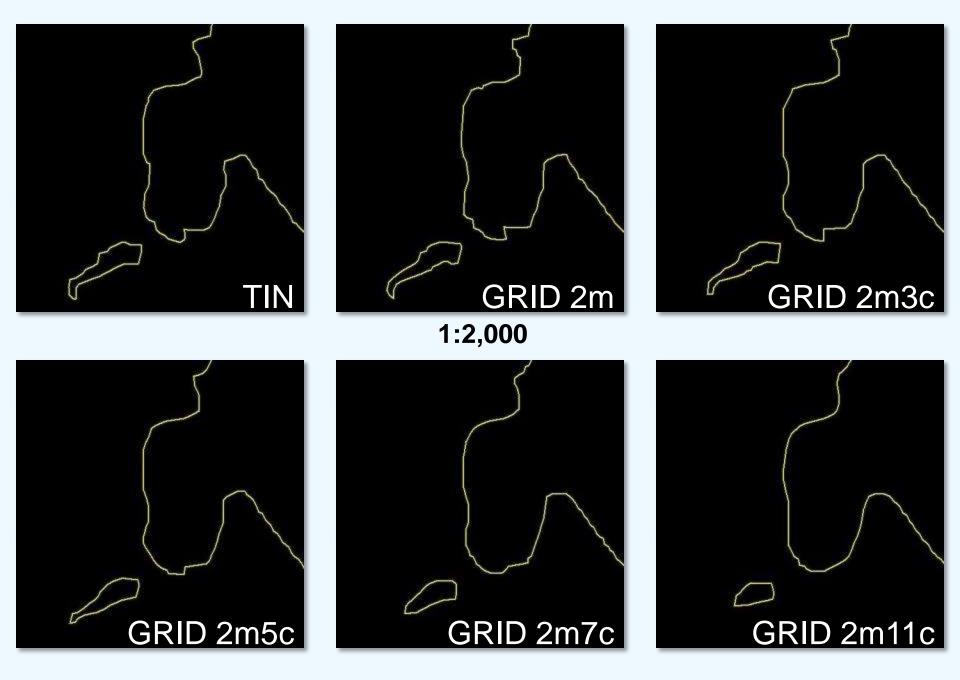
• GRID

- Elevation points are "leveled" through cell averaging
 - Vertical error also leveled
- Applies elevation values to an area rather than specific x/y coordinate
- Vertices of extraction are more uniform due to equal cell size
 - Easier to select generalization tolerance
- Interpolation considers more information in void areas

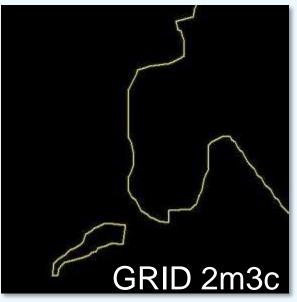


2M GRID

 \mathbb{Q}^{n}



Surface Tests


- TIN from raw LAS extraction (groundshot)
- GRID (2m cellsize)
- GRID Re-sampled (Mean Neighborhood-square)
 - 3 cells
 - 5 cells
 - 7 cells
 - 11 cells
- 3 Water features
 - Des Moines River (large), North River (med.), and Butcher Creek (small)

Surface Selection

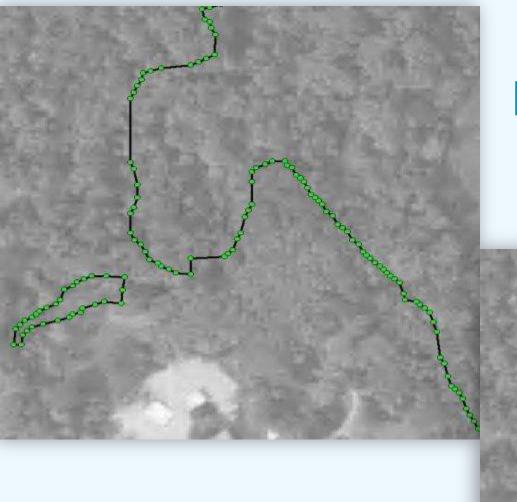
- 3cell Re-sampled GRID surface
 - Smooth, cartographic quality delineation
 - "Clean" at 1:6,000 scale
 - Upheld accuracy standards
- FBS Audit
 - Two pass test
 - Pass 1 Line position compared to source models (<= 1')
 - Pass 2 Line must fall within 38' of the elevation match

FBS Audit results - Des Moines River

Source Surface	Audit Surface	Water Surface	Sample Size	Max/ Average Difference	Pass 1 - %	Pass 2 - % (38ft)	Pass 3 - % (25ft)	Pass 4 - % (5ft)
TIN	TIN	TIN	491	4.54'/0.80'	68.64%	100%	100%	96.33%
GRID 2m	GRID 2m	GRID 2m	491	3.72'/0.43'	88.80%	100%	100%	98.98%
GRID 2m 3c	GRID 2m	GRID 2m	439	2.59'/0.44'	89.29%	100%	100%	99.09%
GRID 2m 5c	GRID 2m	GRID 2m	412	3.99'/0.70'	74.03%	100%	100%	93.20%
GRID 2m 7c	GRID 2m	GRID 2m	387	4.91'/0.91'	65.63%	100%	100%	87.08%
GRID 2m 11c	GRID 2m	GRID 2m	336	9.02'/1.40'	51.79%	100%	99.70%	70.83%
GRID 2m 3c	TIN	TIN	439	2.77'/0.51'	86.10%	100%	100%	97.69%

FBS Audit results - North River

Source Surface	Audit Surface	Water Surface	Sample Size	Max/ Average Difference	Pass 1 - %	Pass 2 - % (38ft)	Pass 3 - % (25ft)	Pass 4 - % (5ft)
TIN	TIN	TIN	1084	11.55'/1.12'	66.88%	100%	99.72%	83.39%
GRID 2m	GRID 2m	GRID 2m	1068	4.02'/0.36'	91.57%	100%	100%	98.13%
GRID 2m 3c	GRID 2m	GRID 2m	991	5.39'/0.41'	88.80%	100%	100%	96.57%
GRID 2m 5c	GRID 2m	GRID 2m	913	4.85'/0.54'	83.46%	100%	100%	93.10%
GRID 2m 7c	GRID 2m	GRID 2m	782	7.28'/0.67'	79.67%	100%	100%	87.98%
GRID 2m 11c	GRID 2m	GRID 2m	604	5.46'/0.99'	65.07%	99.17%	99.01%	70.53%
GRID 2m 3c	TIN	TIN	991	6.34'/0.46'	85.77%	100%	100%	96.37%


FBS Audit results - Butcher Creek

Source Surface	Audit Surface	Water Surface	Sample Size	Max/ Average Difference	Pass 1 - %	Pass 2 - % (38ft)	Pass 3 - % (25ft)	Pass 4 - % (5ft)
TIN	TIN	TIN	521	4.75'/0.29'	95.20%	99.81%	99.42%	98.08%
GRID 2m	GRID 2m	GRID 2m	484	4.33'/0.37'	90.91%	99.59%	99.17%	95.45%
GRID 2m 3c	GRID 2m	GRID 2m	441	4.27'/0.43'	87.53%	99.77%	98.87%	95.69%
GRID 2m 5c	GRID 2m	GRID 2m	409	4.79'/0.51'	86.06%	99.76%	99.27%	91.93%
GRID 2m 7c	GRID 2m	GRID 2m	386	6.00'/0.6'8	78.76%	99.74%	99.48%	85.23%
GRID 2m 11c	GRID 2m	GRID 2m	370	7.07'/0.99'	67.30%	98.92%	97.57%	70.27%
GRID 2m 3c	TIN	TIN	441	4.69'/0.50'	86.85%	99.77%	99.32%	95.01%

Surface Processing Comparison

Surface	Spatial Extent	Overall Time	Direct Labor Time	File Size (rounded)	MB/sq.mi.	Comments
TIN	North River (4 sq. mi.)	12 hours	9 hours	400 MB	100 MB	 Large footprint Extensive staff time
GRID 2m (and 4 versions)	Warren County (715 sq. mi.)	4 hours	1 hour	1800 MB	2.5 MB	Smaller footprintSimple processing

Line Generalization

Line Generalization Results

Location	Line Length Pre-Simp	# of Vertices Pre-Simp	Line Length Post-Simp	# of Vertices Post-Simp	Line Length Reduction %	Vertex Reduction %
North River	35,118 m/ 115,217 ft	3,763	34,440 m/ 112,992 ft	2,482	2%	> 34%
Des Moines River	14,786 m/ 48,510 ft	2,884	14,611 m/ 47,936 ft	1418	1%	> 51%
Butcher Creek	14,935 m/ 48,999 ft	2,385	14,461 m/ 47,445 ft	1,547	3%	> 35%

1:6,000

- TINs used for re-delineated flooding
- Flooding produced 1,280,003 vertices
- Simplified by 1m = 177,311 vertices
- Poly size 39.1MB vs. 5.5MB

Generalized FBS Audit results

Location	Sample Size	Average Difference	Pass 1 - %	Pass 2 - % (38ft)	Pass 2 - % (25ft)	Pass 2 - % (5ft)
North River (Pre-Simp)	991	5.39'/0.41'	88.80%	100%	100%	96.57%
North River (Post-Simp)	989	5.39'/0.41'	88.88%	100%	100%	96.26%
Des Moines River (Pre-Simp)	439	2.59'/0.44'	89.29%	100%	100%	99.09%
Des Moines River (Post-Simp)	432	2.68/0.50'	86.11%	100%	100%	98.38%
Butcher Creek (Pre-Simp)	441	4.27'/0.43'	87.53%	99.77%	98.87%	95.69%
Butcher Creek (Post-Simp)	425	4.11'/0.44'	88.71%	99.76%	99.53%	95.06%

Conclusions

- LiDAR elevation data for Iowa could afford generalization
- Time savings allows for more time dedicated to QA/QC
- Produce quality product more efficiently
- TINs are not necessarily more accurate than Rasters when interpolating surfaces
- Capable of meeting FEMA DFIRM mapping specifications

Benefits Realized

- Surface generation was completed in 1/3rd of the time it takes to produce TIN surfaces
- Estimated 97% storage savings
- Linework more smooth, representative of real world phenomena, and streamlined map production

Comments/Questions?

- Acknowledgements
 - Aurore Larson, P.E., CFM Greenhorne & O'Mara Water Resources Services
 - Carmen Burducea, CFM Greenhorne & O'Mara Water Resources Services
 - Zachary J. Baccala, Senior GIS Analyst PBS&J Floodplain Management Division
- References
 - Cohen, Chelsea, *The Impact of Surface Data Accuracy on Floodplain Mapping*, University of Texas, 2007.
 - Foote, K.E., Huebner, D.J., *Error, Accuracy, and Precision*, The Geographer's Craft Project, Dept. of Geography, The University of Colorado at Boulder, 1995.
 - Galanda, Martin, *Optimization Techniques for Polygon Generalization*, Dept. of Geography, University of Zurich, 2001.
 - Lagrange, Muller, and Weibel, *GIS and Generalization: Methodology and Practice*, 1995.
 - Li, B., Wilkinson, G. G., Khaddaj, S., *Cell-based Model For GIS Generalization*, Kingston University, 2001.
 - North Carolina Floodplain Mapping Program, *LiDAR and Digital Elevation Data* (*Factsheet*), 2003.