MICHAEL BAKER CORPORATION

Updated Regional Regression Equations for Estimating Peak Discharges for Maryland Streams

Wilbert O. Thomas, Jr.

Maryland Association of Floodplain and Stormwater Managers October 21, 2010 Linthicum, Maryland

The objectives of the presentation are to describe:

- The purpose of the Maryland Hydrology Panel
- Previous accomplishments and reports of the Panel
- Recommended hydrologic procedures for Maryland
- Introduce the Third Edition of the Panel report
- New regional regression equations for Maryland
- Summary comments

Maryland Hydrology Panel

 Hydrology Panel convened in June 1996 by Maryland State Highway Administration (SHA) and Maryland Department of Environment (MDE)

Mission of the Panel was

 Review Maryland hydrologic practices and make recommendations concerning peak flood estimating procedures that will best serve to satisfy agency needs, Maryland laws and regulations. Baker

Maryland Hydrology Panel

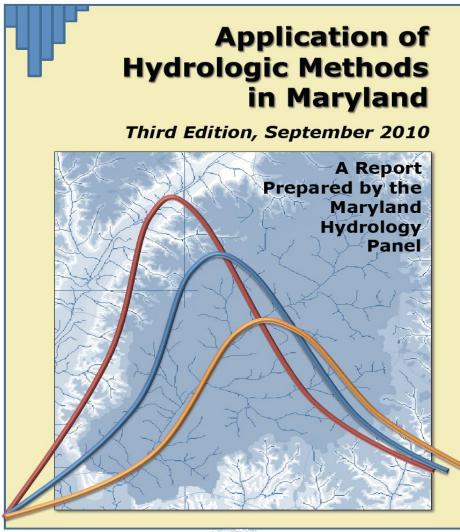
- The Hydrology Panel was to
 - explore the development of improved procedures that would ensure an optimal balance between preserving the environmental quality of Maryland streams and the hydraulic performance of highway drainage structures.
- MDE had selected the NRCS TR-20 model for computing flood flows in Maryland; SHA wanted to make greater use of regional regression equations based on USGS streamgaging records

The Maryland Hydrology Panel

• The current Hydrology Panel consists of:

- Richard Berich, Private Consultant
- Donald Woodward, retired Natural Resources
 Conservation Service
- Glenn Moglen, Virginia Tech
- William Merkel, Natural Resources
 Conservation Service
- Michael Casey, George Mason University
- Wilbert Thomas, Michael Baker, Jr.
- SHA represented by Andy Kosicki and Len Podell

MDE represented by Dave Guignet and others

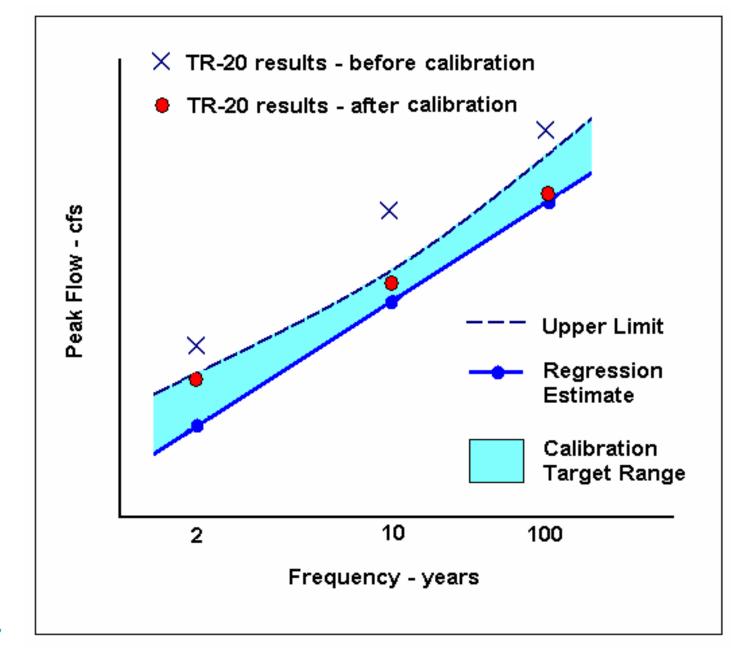

Hydrology Panel Reports

- The Hydrology Panel previously published the following versions of the report: Application of Hydrologic Methods in Maryland
 - February 2001
 - August 2006
- The Third Edition will be completed by the end of October 2010 and posted at:

– <u>http://www.gishydro.umd.edu/panel.htm</u>

Third Edition of Hydrology Panel Report

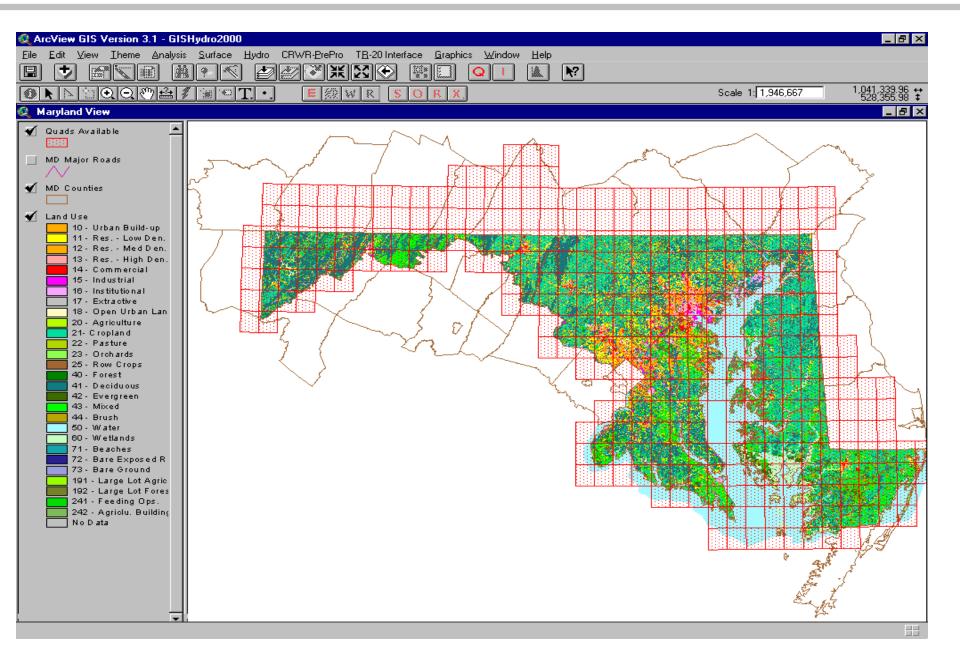
MARYLAND


Jay G. Sakai Director, Water Management Administration Baker

Hydrologic Procedures

- In all versions of the Panel report, the recommended hydrologic procedures included:
 - TR-20 model developed by NRCS to serve as the base method
 - Design discharges based on ultimate development
 - TR-20 "calibrated" to flood discharges estimated at USGS gaging stations or from regional regression equations

Calibration of TR-20 Model

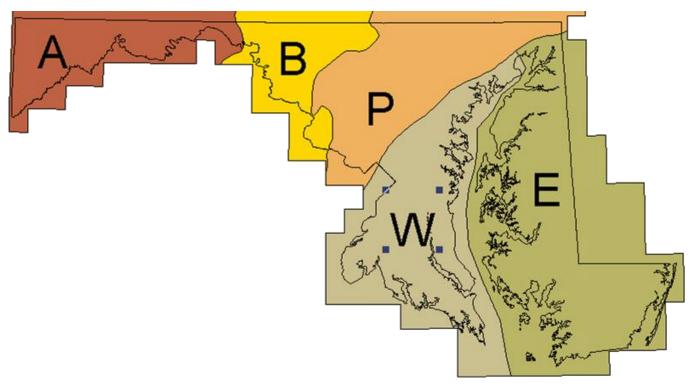

Regional Regression Equations

- The regional regression equations used to "calibrate" TR-20 have changed over time:
 - February 2001 report: USGS regression equations described by Dillow (1996)
 http://md.water.usgs.gov/publications/wrir-95-4154/
 - August 2006 report: Fixed Region regression equations described by Moglen and others (2006) – a UMD Research Report http://www.gishydro.umd.edu/documents/mdsha_reports/peakflowsfinalreport.pdf
 - September 2010 report: Fixed Region regression equations to be described in this presentation

Baker Implementation of Hydrologic Procedures

- TR-20 and regional regression procedures implemented within GISHydro2000 – software package developed by the University of Maryland with funding from SHA
 - GIS software based on ArcView Version 3 that includes statewide land use, soils and topographic data
 - New version GISHydroNXT being developed based on ArcGIS 9.3.1 as ArcView version will be phased out in the future http://www.gishydro.umd.edu/news/news.htm

GISHydro2000



- GISHydro2000 is available at no cost at
 - <u>http://www.gishydro.umd.edu</u>
- A web-based version of the software is available at
 - <u>http://www.gishydro.umd.edu/web.htm</u>
- Software is also available at SHA headquarters for firms performing work on state or county-funded projects by contacting Andy Kosicki at SHA

Regional Regression Equations

- Dillow (1996) defined five hydrologic regions (USGS WRIR 95-4154)
- Moglen and others (2006) evaluated the five regions and decided to use the same regions
 - Evaluated Region of Influence, L-Moment procedures and Fixed Regions equations
 - Determined the Fixed Regions approach to be most accurate
- Recently developed (2010) Fixed Region regression equations have combined the Piedmont and Blue Ridge Regions for rural watersheds

Maryland's Physiographic Provinces

- A = Appalachian Plateaus and Allegheny Ridges
- B = Blue Ridge and Great Valley
- P = Piedmont
- W = Western Coastal Plain
- E = Eastern Coastal Plain

Regional Regression Equations (2010)

- Motivation for updating the Moglen and others (2006) equations for the Coastal Plain Regions was the release of SSURGO soils data by NRCS
- Motivation for updating the Moglen and others (2006) equations for rural watersheds in the Piedmont and Blue Ridge Regions was the development of a new limestone/carbonate rock map

- Regression equations updated in September 2007 after release of SSURGO soils data (2006 equations based on STATSGO soils data)
- Equations based on 28 stations in MD and DE with annual peak data through 2006
- Revised SSURGO data became available in early 2010 and used in final equations – peak flow data were not updated

Eastern Coastal Plain (ECP) Analysis

The 2010 equations for ECP based on

- Drainage area (DA) in square miles
- A soils (S_A) in percent of drainage area SSURGO data
- Land slope (LSLOPE) in ft/ft (perpendicular to channel)

An example of the revised equations

 $- Q_{100} = 4433 DA^{0.812} (S_A + 1)^{-0.230} LSLOPE^{0.557}$

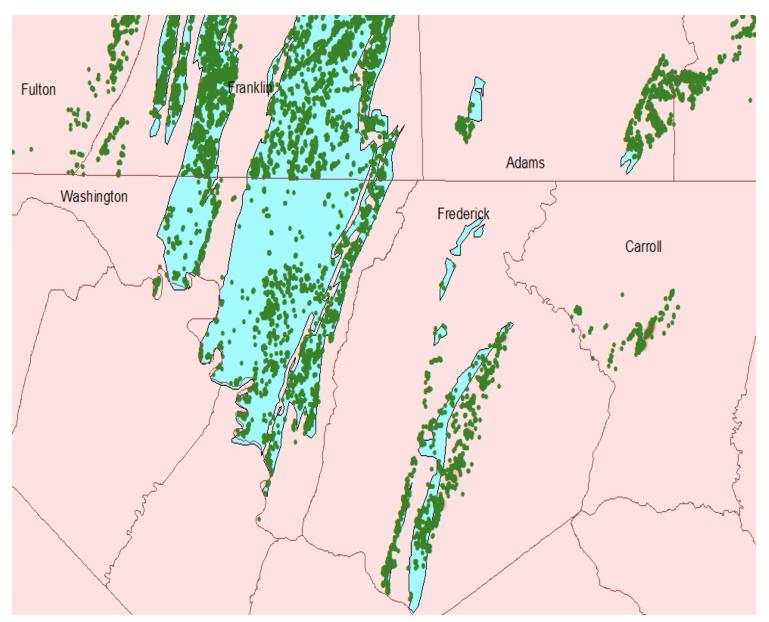
Western Coastal Plain Analysis

- Regression equations updated in June 2009 after release of SSURGO soils data (2006 equations based on STATSGO soils data)
- Equations based on 24 stations in MD with annual peak data through 2008
- Revised SSURGO data became available in early 2010 and used in final equations – peak flow data were not updated

Western Coastal Plain (WCP) Analysis

The 2010 equations for WCP based on

- Drainage area (DA) in square miles
- Sum of C and D soils (S_{CD}) in percent of drainage area – SSURGO data
- Impervious area (IA) in percent of drainage area
- An example of the revised equations

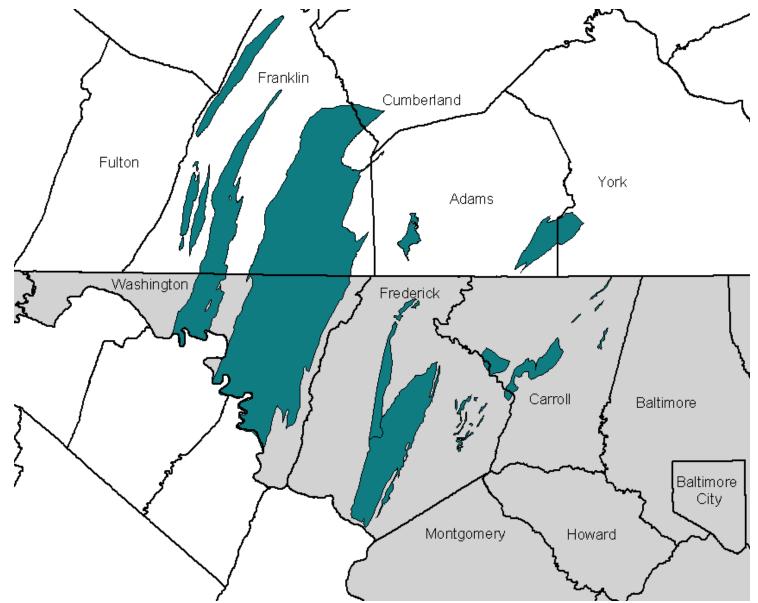

- $Q_{100} = 25.6 \text{ DA}^{0.608} (IA+1)^{0.262} (S_{CD}+1)^{0.781}$

 In an effort to improve the estimation of flood discharges in karst areas, the Hydrology Panel determined the number of sinkholes per square kilometer

Data were compiled from

- PA Dept of Conservation and Natural Resources
- Tom DeVillbis with Carroll County Planning Dept
- Dave Brezinski with MD Geological Survey provided data for Frederick and Hagerstown Valley
- Maryland Geological Survey RI 73

Baker Sinkholes and Limestone Map from Dillow (1996)

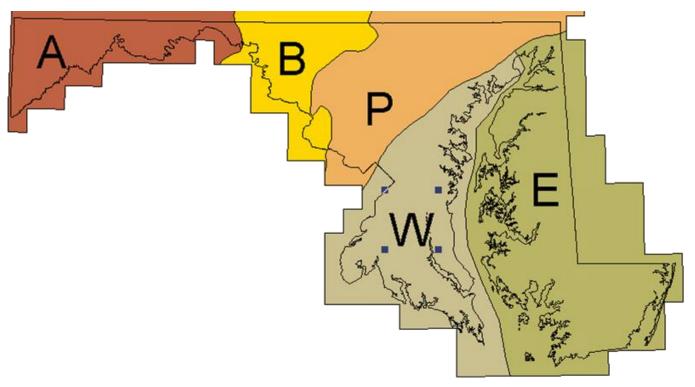


ChallengeUs.

Baker Sinkholes and Limestone/Carbonate Rock

- Regression analyses were performed using the density of sinkholes and the percent carbonate rock
- The percent carbonate rock was shown to provide slightly better results
- The percent carbonate rock was developed from the following map developed by the Hydrology Panel

Baker Revised Limestone/Carbonate Map (2010)



ChallengeUs.

Piedmont and Blue Ridge Analysis

- Rural stations in the Piedmont and Blue Ridge Regions were combined into a single analysis since limestone/carbonate rock is prevalent in both regions
- Previous analyses, Dillow (1996) and Moglen and others (2006), only used limestone data in the Blue Ridge Region
- 53 rural stations with peak flow data through 1999 were used in 2010 analysis

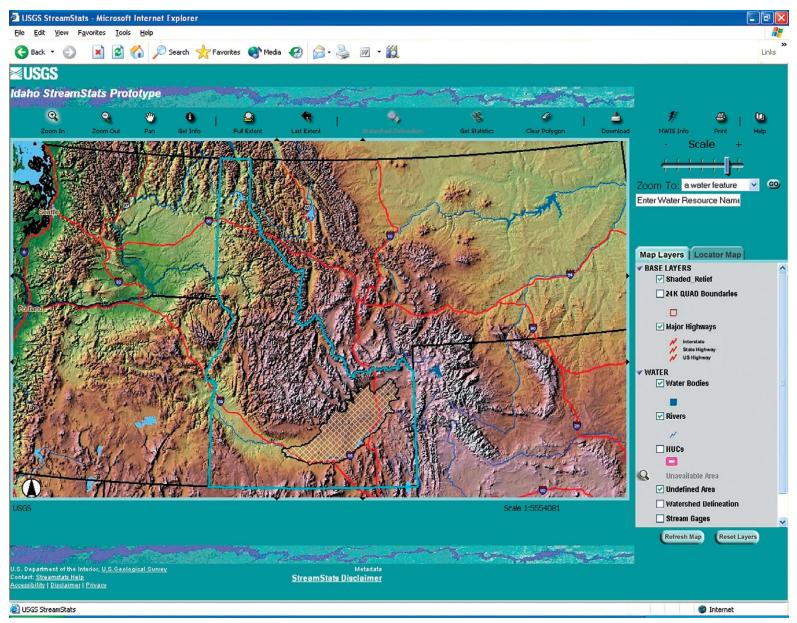
Maryland's Physiographic Provinces

- A = Appalachian Plateaus and Allegheny Ridges
- B = Blue Ridge and Great Valley
- P = Piedmont
- W = Western Coastal Plain
- E = Eastern Coastal Plain

Baker Piedmont and Blue Ridge (P&BR) Analysis

The 2010 rural equations for P&BR based on

- Drainage area (DA) in square miles
- Limestone/carbonate rock (LIME) in percent of drainage area
- Forest cover (FOR) in percent of drainage area
- An example of the revised equations


- Q₁₀₀ = 1471 DA^{0.617} (LIME+1)^{-0.154} (FOR+1)^{-0.045}

- The urban equations for the Piedmont Region were not updated (DA and IA)
- The equations for the Appalachian Plateau Region were not updated (DA and LSLOPE)
- These equations are the same as developed by Moglen and others (2006) and given in Appendix 3 of the August 2006 Panel report

- USGS is developing the StreamStats Program for Maryland for MDE
- USGS will use the regression equations developed by the Hydrology Panel in StreamStats - cite the Third Edition of the Panel report for documentation
- StreamStats, like GISHydro2000, is a GIS web-based application for applying regression equations

USGS StreamStats Program

ChallengeUs.

New (2010) Regression Equations

New regression equations provide following improvements:

- Based on SSURGO soils data in the Eastern and Western Coastal Plain Regions
- Updated flood data for the Eastern and Western Coastal Plain Regions
- Combined regression equations for rural watersheds in Piedmont and Blue Ridge Regions provides estimates for karst watersheds in the Piedmont Region

- Third edition of Panel report will be posted at <u>http://www.gishydro.umd.edu/panel.htm</u> by end of October 2010
- USGS will include new regression equations in their StreamStats Program
- New regression equations will be available in GISHydro2000 and in a standalone program (<u>http://www.gishydro.umd.edu/document.htm</u>)