AECOM Imagine it. Delivered.

Modeling of Long Culverts and Stormdrains

A Comparison of Different Methods

Shrinivas Kaulgud, P.E., CFM Cheryl Hannan, P.E., CFM, LEED AP

October 12, 2017

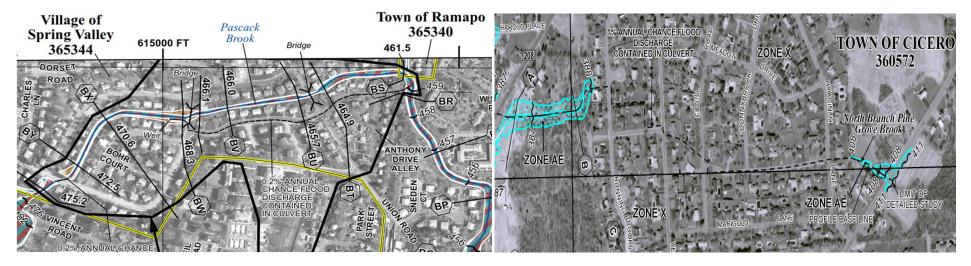
Presentation Outline

- Introduction
- Case Studies
- ScenarioComparisons
- Conclusions

Introduction

Selected models that can be used with long culverts

- HEC-RAS with Culvert Routine
- HEC-RAS with Lid Option (steady-state)
- CulvertMaster
- StormCAD
- XP-SWMM

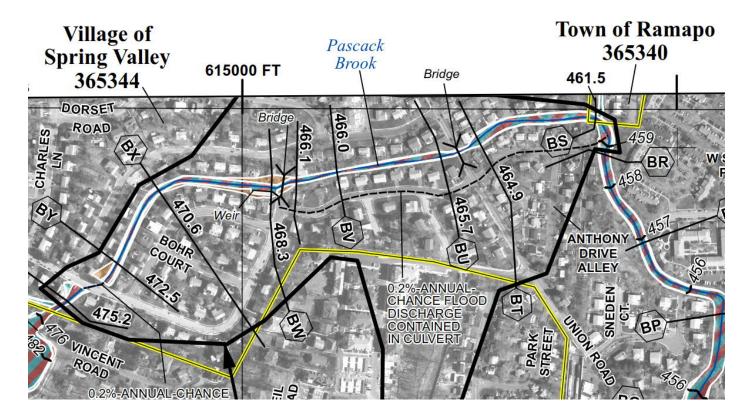

Case Studies

Lateral weir with long culvert

Pascack Brook, Rockland County, NY

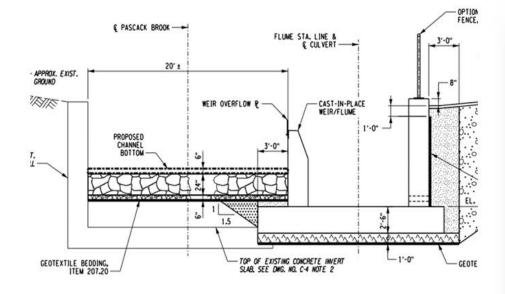
Long culvert with inlets

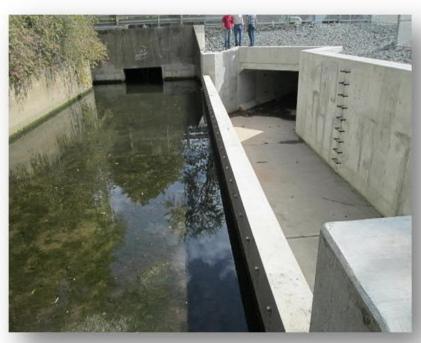
North Branch Pine Grove Brook, Onondaga County, NY



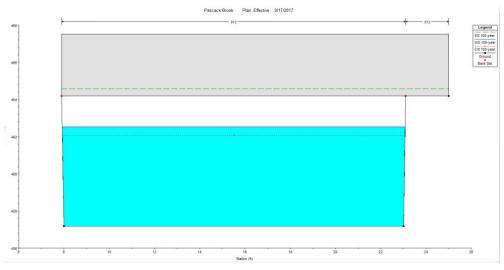
Case Study No. 1 Lateral Weir with Long Culvert Pascack Brook, Rockland County, NY

Current FEMA floodwater elevations were modeled using HEC-RAS with a split flow. The flow going over the lateral weir enters a long culvert that was modeled using the lid option.



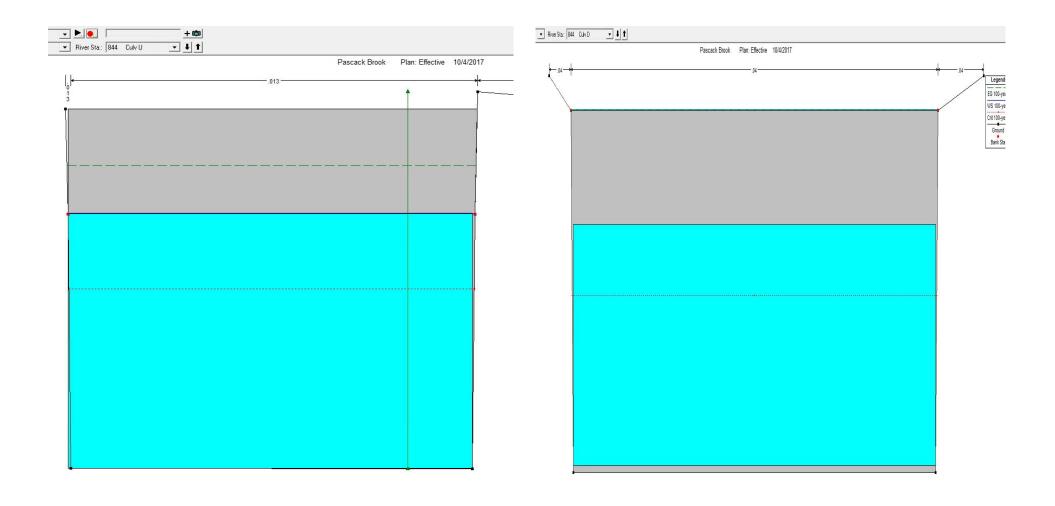


1. The project features a sharp-crested overflow weir at the upstream (inlet) end of the bypass culvert:


Scenarios

- 1. Current FEMA Model: HEC-RAS with Lid Option
- 2. HEC-RAS with Culvert Routine
- 3. CulvertMaster

Scenario 1: Current FEMA Model



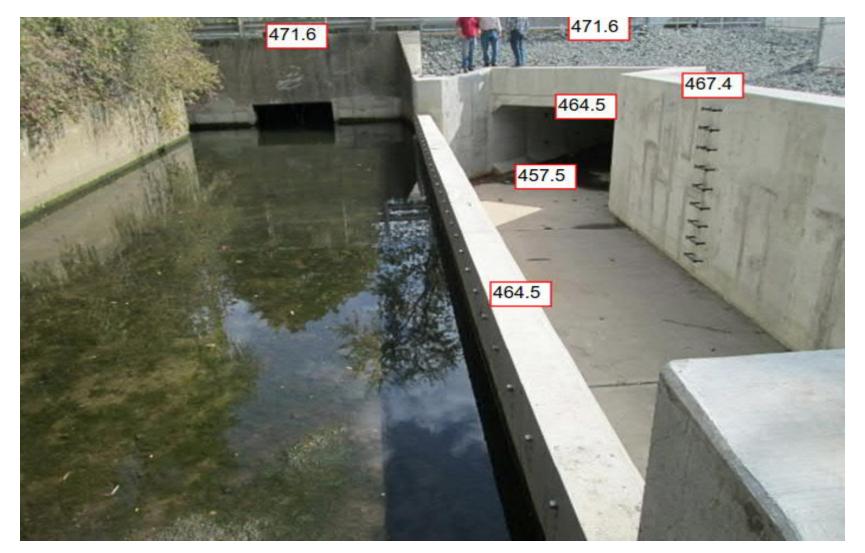
Modeling Long Culverts/ Stromdrains

Scenario 2: HEC-RAS with Culvert Routine

Scenario 3: CulvertMaster

Culvert Designer/Analyzer Report Long Culvert for Pascack Brook

Culvert Designer/Analyzer Report Long Culvert for Pascack Brook


Storm Eve	nt	Design	Discharge		928.00 cfs
		in Advision	2011 L		
Peak Disch	arge Method: User-S	pecified			
Design Dis	charge	928.00 cfs	Check Discharg	ie	0.00 cfs
	onditions: Constant Ta				
Tailwater C Tailwater E		uilwater 460.00 ft			
			HW Elev.	Velocity	
Tailwater E	Elevation	460.00 ft		Velocity 9.47 ft/s	

12.75 Cont 12.55 C		120000	a second s			1120
Storm Eve	nt	Design	Discharge		928.00	cfs
Peak Disch	narge Method: User-S	pecified				
Design Dis	charge	928.00 cfs	Check Discharg	0	0.00	ofe
Design Dis	ondigo	520.00 015	CHECK DISCHAR	96	0.00	CIS
	onditions: Constant Ta			Je	0.00	CIS
	onditions: Constant Ta			JC	0.00	CIS
Tailwater Co	onditions: Constant Ta	ailwater 460.00 ft	- 444 (PR 21-01)	Velocity	0.00	CIS
Tailwater Co Tailwater E	onditions: Constant Ta	ailwater 460.00 ft	e HW Elev.		0.00	CIS

Average HW = 466.4 feet

Culvert routine HWdepth = 464.5 feet CulvertMaster HW depth = 466.4 feet

Lid option headwater depth = 462.6 feet

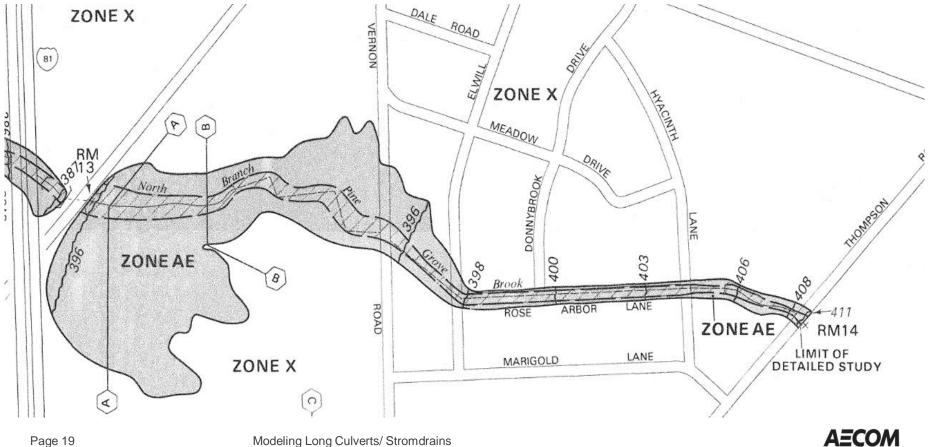
Case Study No. 1: Final Thoughts

- Most accurate model could be an unsteady model
- All three ways of modeling showed the flow contained in the culvert
- Lid option gave the least conservative values and there are concerns that the culvert is actually under pressure

Case Study No. 2 Long Culvert with Inlets North Branch Pine Grove Brook, Onondaga County, NY

- 2,600' stormdrain
- Watershed area: 170 AC. at S. Bay Road
- Effective 1% flow: 80 CFS at S. Bay Road

Scenarios


- 1. Historic FEMA Study: HEC-2 (no stormdrain)
- 2. Current FEMA Study: HEC-RAS Lid Option
- 3. HEC-RAS with Culvert Routine
- 4. Culvert Master (stormdrain) + HEC-RAS Overland
- 5. StormCAD (stormdrain) + HEC-RAS Overland
- 6. XP-SWMM
- 7. XP-SWMM with Hydrology Updates

Scenario 1: Historic Study

- Floodwater elevations were modeled using HEC-2

- The stormdrain was ignored

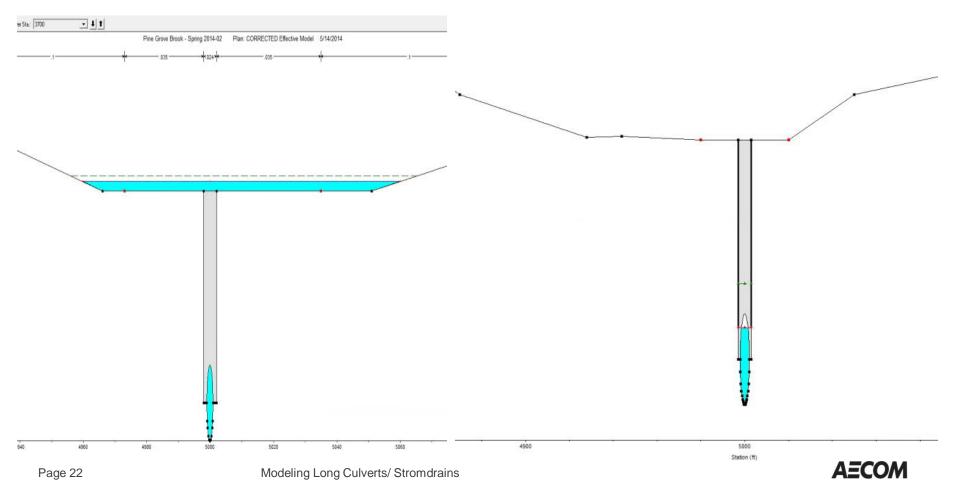
Page 19

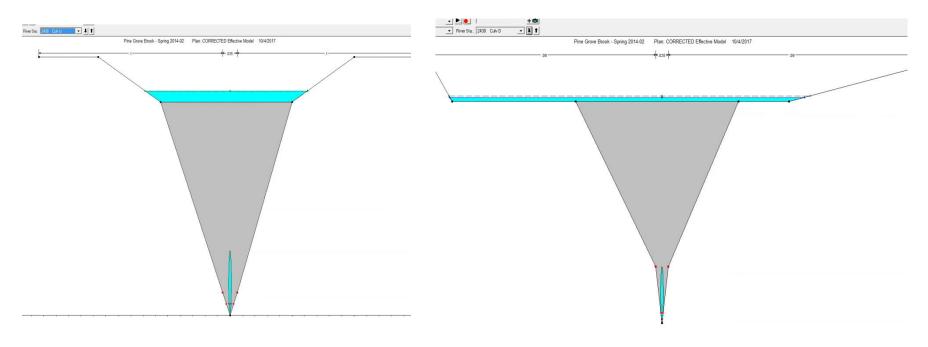
Scenario 2: Current FEMA Study

- Floodwater elevations were modeled using the lid option in HEC-RAS
- Model shows flow is contained in the culvert

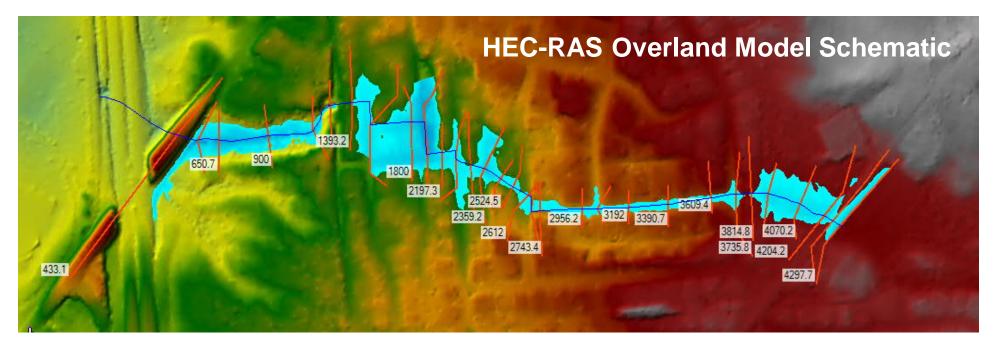
AECOM

Scenario 2: Lid Option


- Model uses historic cross section locations and discharges
- Takes into account both storage in the pipe and overland flow
- Overland flow is generally located directly over the pipe
- Model produces a narrow floodplain with an average depth of less than 0.5 foot


Scenario 2: Lid Option

Maximum depth of flow above ground was 0.3 foot at upstream end and contained in the stormdrain at the downstream end

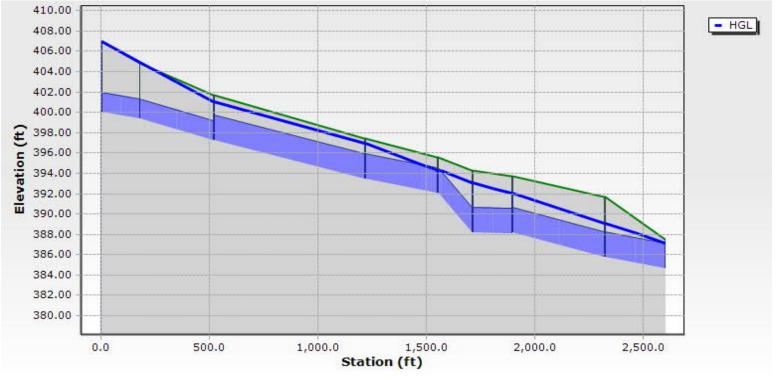

Scenario 3: HEC-RAS with Culvert Routine

- Stormdrain modeled as a regular culvert
- Used the smallest diameter pipe and an average slope
- Maximum depth of overland flow equal to 0.35 foot at upstream end and 0.14 foot at downstream end

Scenario 4: CulvertMaster + HEC-RAS

- Pipe capacity using CulvertMaster
- 3 pipe sizes, 3 runs
- Overland flow using HEC-RAS
- Overland flow = total flow pipe capacity

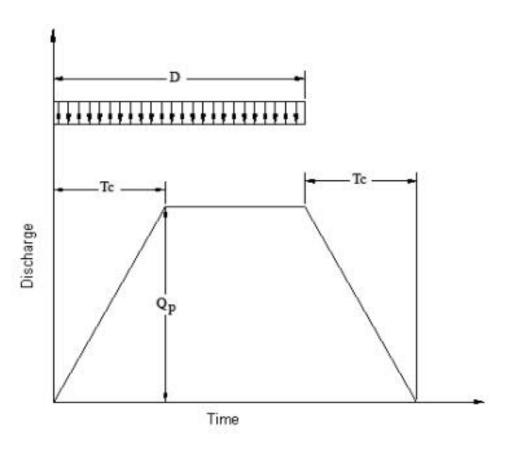
Scenario 4: CulvertMaster + HEC-RAS (continued)


CulvertMaster + HEC-RAS results

Scenario 5: StormCAD + HEC-RAS

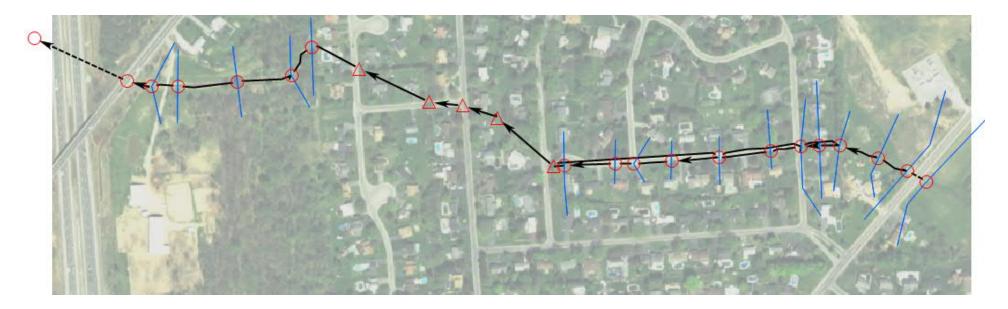
- Pipe capacity using StormCAD
- 8 pipes, 9 manholes/inlets
- Overland flow using HEC-RAS
- Overland flow = total flow – pipe capacity

Scenario 5: StormCAD + HEC-RAS (continued)


StormCAD + HEC-RAS results

AECOM

Scenario 6: XP-SWMM


- Stormdrain and overland flow modeled in XP-SWMM
- Unsteady state
- Tc calculations using TR-55
- Modified rational flat top hydrograph (figure below)
- 8 stormdrains, 2 culverts, 16
 overland XSs , 5 storage nodes
- At each manhole. pipes are connected to overland crosssections

Scenario 6: XP-SWMM

XP-SWMM model schematic

Scenario 6: XP-SWMM (continued)

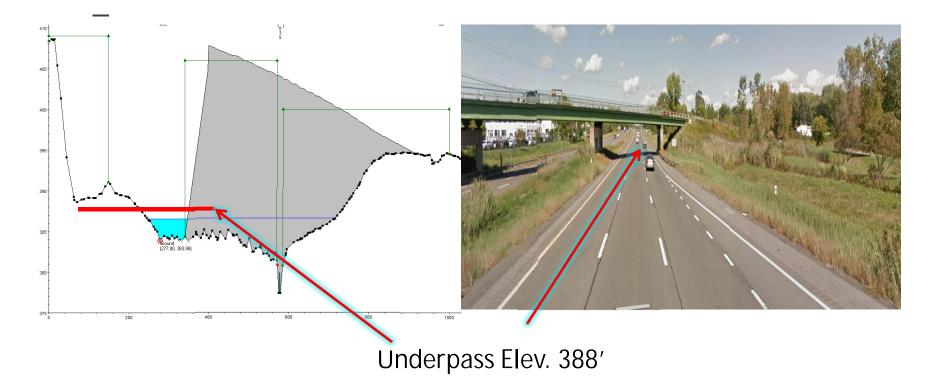
XP SWMM results

ΑΞϹΟΜ

Scenario 7: XP-SWMM with hydrology updates

SWMM Updates: What and Why

- Current FEMA flows lower than typically expected


Location	Area (ac)	1% Peak Flow (cfs)	cfs /ac
At Stormdrain Inlet	50	28	0.6
At Stormdrain Outlet	145	62	0.4
At South Bay Road	170	80	0.5

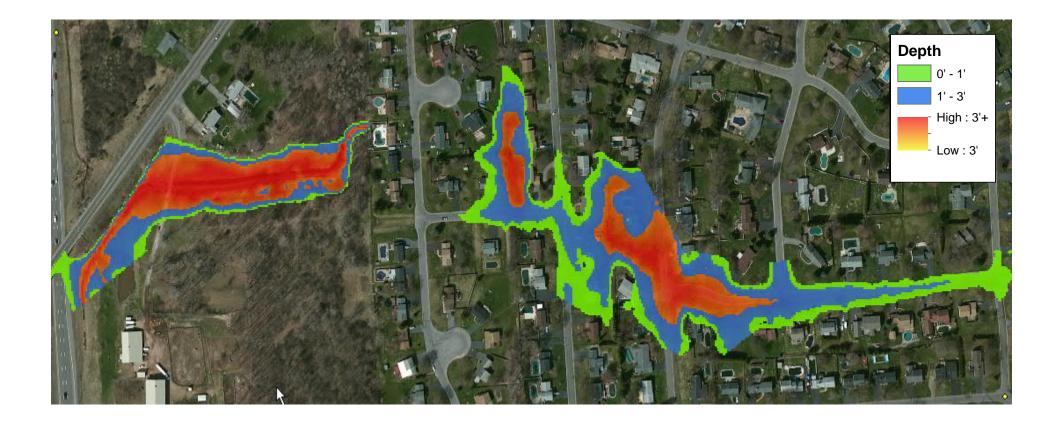
Scenario 7: XP-SWMM with hydrology updates

SWMM Updates: What and Why

- S Bay Road underpass geometry setup incorrect

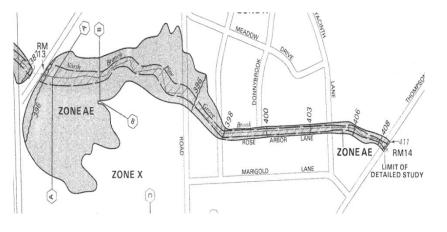
AECOM

Scenario 7: XP-SWMM with hydrology updates (continued)


XP-SWMM with Hydrology Updates

- Rational method
- Watershed delineation using 5 ft LiDAR DEM
- Tc calculations using TR-55
- Runoff coefficient values from 0.4-0.6 (soil types C and D)
- NOAA 14 IDF information
- Modified rational flat top hydrograph with 15 min constant time
- Typical 1% peak flow per acre values ranged from 1-2 cfs/ac
- **S** Bay Road Underpass Weir Update
- S Bay Road underpass weir elevation corrected to 388'

Scenario 7: XP-SWMM (continued)


XP-SWMM with Hydrology Updates Results


AECOM

Scenario Comparisons

1. HEC-2: No Stormdrain

4. CulvertMaster + HEC-RAS 5. StormCAD + HEC-RAS

2. HEC-RAS Lid Option
 3. HEC-RAS Culvert Routine

6. XP-SWMM

Scenario / Model Comparisons

Scenario / Model	Pro	Con
1: HEC-2 (No Stormdrain)		Too Conservative
2: HEC-RAS Lid option (Steady State)	 Applicable for non-pressurized pipes HEC-RAS is widely used Floodway analysis is easy 	 Underestimated WSELs for pressurized pipes Coding Lid geometry is tedious
3: HEC-RAS with Culvert	 Setup is simple and quick 	 Pipe/culvert size changes cannot be captured
4: Culvert Master+ HEC-RAS	 Simplified analysis 	 All pipe network details cannot be captured Rough pipe capacity estimates
5: StormCAD + HEC-RAS	Detailed pipe networkBetter accuracy	 Overland flow overestimate flooding
6: XP-SWMM	 Detailed overland and pipe networks Unsteady State Seamlessly captures overland flow and underground pipe flow interactions 	 Model Stability / Continuity Errors Model setup is tedious Bridge links tend to overestimate backwater compared to HEC-RAS Floodway analysis is tedious

Conclusions

- Steady State HEC-RAS with Lid option for pressurized pipes underestimated the floodplain and water surface elevations for long culverts/ stormdrain pipes
- If an engineer prefers using the HEC-RAS lid option for long culvert/ stormdrains then alternative pipe capacity analysis should be considered for comparison

- CulvertMaster+HEC-RAS or StormCAD + HEC-RAS combination could be used for moderate level accuracy.
- If high accuracy is desired EPA SWMM/ XP-SWMM or similar program should be considered

Which Model Works Best?

Model	Pressurized		Desired Accuracy		Shape / Size	Ground profile	Culvert / Stormdrain Length	
	Yes	No	High	Low- Medium	Changes	Changes -	Short < ~300'	Long > ~300'
HEC-RAS with Culvert	Х	Х		х			Х	
HEC-RAS Lid Option		Х		Х			Х	Х
CulvertMAster/ HY 8 + HEC-RAS	Х	Х		Х			Х	Х
StormCAD / SSA + HEC-RAS	Х	Х		х	Х	Х	Х	Х
XP-SWMM / EPA SWMM	Х	Х	Х	Х	Х	Х	Х	Х

Questions??

Thank You

shrinivas.kaulgud@aecom.com cheryl.hannan@aecom.com

