

Maxwell Lindsay and Tucker Cottrell

Base Level Engineering Analysis – Application of rain-on-grid method, a case study using HECRAS-2D

Agenda

- 1. 1D Modeling Methodology
- 2. 2D Rain-on-Grid Methodology
- 3. Comparison of Results
- 4. Conclusion

1-D Modeling

and the second second

- 7 Au

1-D Modeling Methodology

Geographic Information Systems (GIS)

- Create Features in GIS
 - Stream lines
 - Flow paths
 - Bank lines
 - Cross Sections
 - Ineffective areas
 - Manning's roughness coefficient
- > Overlay features onto 3D terrain layer
- Run HEC-GeoRAS and export geometry to HEC-RAS
- > Obtain flow data from regression equations

GIS Features

1-D Modeling Methodology (continued...)

HEC-RAS

- Run steady-state flow
 - 500, 100-plus, 100, 100-minus, 50, 25, and 10
- Check stream water surface profiles
 - Drawdowns
 - Crossing profiles
 - Bank stations
 - Manning's Roughness coefficients
 - Reach lengths

Water Surface Profiles

100-yr Floodplain

N

0.6 Miles

0.15 0.3

1D Modeling Limitations

> Flow needs be predominantly uni-directional

Floodplain delineation is bounded by cross section length

Well-defined channel and overbanks

When to Consider 2D Modeling

- > Braided Channels
- Urbanized Areas
- > Wetlands/Swamps
- Alluvial Fans

2D Modeling Basics

- Grid is used to represent the channel and floodplain
- Grid cells can compute flow velocities in the x and y direction
- Cell size can vary based on the desired model resolution

2D Modeling Using Rain-on-grid

- HEC-RAS allows a boundary condition of an excess rainfall hyetograph (excess rainfall depth as a function of time)
- Requires the 2D grid to extend to the basin divide of the area of interest
- Allows the modeler to develop a hydrologic input for the area of interest instead of developing flows at certain locations along the stream – flow routing is left to the model itself

2D Rain-on-Grid

2D Approximate Study Methodology

- Refined grid created around scoped streams
- Stream lines from the National Hydrography Dataset imported as break lines to increase model resolution near major flow paths
- Larger 500x500 foot grid cell used in other areas
- Hydrology derived by averaging sub basin curve numbers, using National Land Cover Dataset (NLCD) to provide data about land use

Grid and Break lines

100-year Floodplain

100-year Floodplain

Model Results

- > Number of 2D Cells: 818,598 cells
- > Smallest Cell size: 353 Square feet
- > Largest Cell size: 663,880 square feet
- > Average cell size: 3440 square feet
- > Area: 101 square miles
- Runtime: 36 hours

Results

Model Results

- Peak outflow at downstream end: 10,143 cfs
- Regression derived peak flow at this location: 6,091 ± 4181 cfs
- Upper Error Bounds: 10,272 cfs

Velocity Tracing

Comparison of 1D and 2D Results

Comparison of 1D and 2D Results

Conclusion

Limitations

1D

- Considers only one dimension
- Labor intensive GIS setup
- Models often subjective
- Constant back and forth between GIS and HEC-RAS

2D

- Engineers, government officials and other stakeholders are experienced with 1D models
- Current regulations and FEMA guidance have been developed with 1D modeling in mind
- Long model run times

Conclusion

Advantages of 2D models

Eliminates the need to model streams at the cross section level

Confluences are captured inherently

No need to manually add bank stations, blocked flow, or ineffective areas to the cross sections

Can be easier to develop the hydrologic data for model input

Conclusion/Takeaways

- Further research into 2D rain-on-grid modeling
 - > Adjust parameters
 - Perform hydrology on individual sub basins

➢ 2D rain-on-grid and 1D models produce accurate BLE base level floodplains

More powerful computer, greatly accelerate 2D model run time

Questions?

Without change there is no innovation, creativity, or incentive for improvement. Those who initiate change will have a better opportunity to manage the change that is inevitable.

William Pollard

Tucker Cottrell, EIT, CFM Tucker.Cottrell@Stantec.com

Maxwell Lindsay, EIT Maxwell.Lindsay@Stantec.com

