

Bacteria Total Maximum Daily Loads **Observations from Maryland**

Manasa Damera PE, CFM November 08, 2018

Local TMDL

EPA published regulations in 1992 establishing TMDL procedures

Local TMDLs

- Vehicle for implementing State Water Quality Standards
- State is responsible for developing TMDL for all waters identified impaired in Section 303 (d) list
- Needs to be approved by EPA
- Requires public participation in development of TMDL
- Deadlines to meet TMDL vary by State

Typical Pollutants of Concern for Local TMDL

- Nutrients and sediment
- Bacteria
- Chlorides
- Polychlorinated biphenyls
- Chlordane
- Heavy metals
- Mercury
- Trash
- Carbonaceous biochemical oxygen demand
- Calcium carbonate

Source: Google Images

https://mdewin64.mde.state.md.us/WSA/IR-TMDL/index.html?webmap=059dfe859bf846faa3c9c465ed04530b

TMDL Comparison

Chesapeake Bay TMDL

- Thee pollutants of concern (sediment, nitrogen, and phosphorus)
- Developed by EPA, administered by MDE's sediment and stormwater program
- o 2025 deadline
- Regulated at the local level through NPDES permit since 2010
- Applies to all MS4s and industrial permit holders
- Pollutant load reductions (in pounds)
- Met through urban BMPS treatment of impervious areas

Local TMDL

- Numerous pollutants (bacteria, PCBs, etc.)
- Developed by MDE Sciences
 Services Administration, approved
 by EPA
- Iterative process until goals achieved
- Regulated at the local level through the NPDES permit since 2014
- Applies to Phase 1 MS4s municipalities only
- Percent reductions

etc.

 Focus on treating human sources through behavior change, septics,

Regulatory Requirement

Fourth Generation MDE Phase I MS4 communities' NPDES permits require restoration plans for local TMDLs within one year of permit issuance

> "... Within one year... shall submit to MDE for approval a restoration plan for each stormwater WLA approved by EPA prior to the effective date of this permit..."

Components of a TMDL Restoration Plan

- Restoration projects identified to meet the TMDLs
 - -Cost estimate
 - -Implementation plan
- $_{\odot}\,$ Schedule for meeting TMDLs
- Public review and comment

- Continuous evaluation of the Restoration Plan
 - Monitoring
 - Modeling
- Re-evaluate restoration strategies annually based on progress

Bacteria TMDLs in Maryland

Source: MDE

Common Sources of Bacteria Impairment

- Illicit discharges
- Human Sanitary sewer overflows
 - Onsite sewage disposal system

Pet waste

Wildlife

Marinas

Agricultural / domestic

MDE Guidance

- Source identification and estimation of bacteria loads
 - Bacteria source tracking
 - Modeling
 - Local monitoring
 - Hot spot investigation
- Load reduction
 - Prioritize human source elimination
 - Domestic pet source elimination
 - Wildlife source elimination
 - Stormwater source elimination
- Develop evaluation plans
 - Modeling
 - Monitoring

F	ENAL Guidance for Developing a Stormwater Wasteload Allocation Implementation Plan for Bacteria Total Maximum Daily Loads
	DEPARTMENT OF THE ENVIRONMENT 1800 Washington Boulevard, Suite 540 Baltimore MD 21230-1718
	- FINAL - May 2014
B	lacteria Implementation Plan Guidance INAL 5/14/2014 1

AECOM

Strategies to Meet Bacteria TMDLs

o Human sources – Highest Priority

- Elimination of illicit discharges
- Elimination of sanitary sewer overflows
- Retirement of failing septic systems
- Outreach to marinas
- Outreach to homeless population

Stormwater source

- BMPs with bacteria removal efficiency

• Pet sources

- Pet waste education and outreach
- Incentives or enforcing proper pet waste disposal

Wildlife sources

- Vector control
- Deer and geese management
- Wildlife sources

 $\Delta = CO\Lambda$

Challenges Associated with Meeting Local Bacteria TMDL Goals

- Aggressive schedule to meet Chesapeake Bay TMDL
- Lack of available best management practices (BMPs) performance data for bacteria
- Effective ways to track progress
 - Modeling or monitoring
- Interaction between sewer and stormwater departments
- Interaction with consent decree or other initiatives
 - Baltimore City
 - Prince George's County
 - Washington Suburban Sanitary Commission

Varying Bacteria Removal Efficiencies for BMPs

BMP Type	Bacteria Pollutant Removal Efficiency (%)
Bioretention	702
Detention Structure Dry (Dry Pond)	881
Disconnection of Non-Rooftop Runoff	010
Disconnection of Rooftop Runoff	010
Dry Swale	06
Dry Wells	96 ³
Extended Detention Structure, Dry	88 ¹
Extended Detention Structure, Wet	701
Forestation on Pervious Areas	42 ⁵
Grass Swale	06
Green Roof	011
Impervious Surface Elimination	010
Infiltration Basin	963
Infiltration Berms	96 ³
Infiltration Trench	96 ³
Landscape Infiltration	96 ³
Level Spreader	0 ^a
Micropool Extended Detention Pond	701
Oil-Grit Separator	07
Other	07
Permeable Pavements	371
Rain Gardens	70 ²
Rain Water Harvesting	010
Retention Pond	701
Sand Filter	371
Shallow Marsh	78 ¹
Sheetflow to Conservation Areas	425
Step Pool Conveyance System	704
Stream Restoration	010
Submerged Gravel Wetland	781

ВМР Туре	Fecal Coliform Bacteria		
Runoff reduction practices			
Green roofs	90%		
Porous pavement	90%		
Nonstructural practices ¹	NA		
Rainwater harvesting	NA		
Submerged gravel wetlands	75%		
Landscape infiltration	90%		
Infiltration berms	90%		
Dry well	90%		
Micro-bioretention	90%		
Rain gardens	75%		
Swales, dry	35%		
Enhanced filters	90%		
Infiltration basin & trench	90%		
Bioretention filters	90%		

AECOM

Resources

• Bacteria land use loading rates

- Insufficient data to tie bacteria loads to land use
- Residential land biggest contributor

o Bacteria source analysis techniques

- Microbial source tracking methods
- Modified IDDE and SSO monitoring to improve bacteria management

o Stormwater BMP performance

- BMP efficiency data is variable
- Wetlands and filtering practices highly effective
- Dry ponds and swales least effective

Fecal Indicator Bacteria Management:

Reviewing the Latest Science on Bacteria Control for Watershed Managers

Prepared by: David Wood, Chesapeake Stormwater Network September 28, 2018

AECOM

Moving Forward

- Prioritize elimination of human sources
- **o** Programmatic approaches
 - Pet waste management
 - Reduction in SSOs/OSDS upgrades
 - Marina outreach
- Long-term monitoring
 - Leverage current MDE and local monitoring data
 - Trends in loads
 - Effectiveness of restoration strategies
- Adaptive management strategies
- Monitor effectiveness of BMPs in reducing bacteria concentrations
- Selection of BMPs that help with Chesapeake Bay and local TMDL goals

AECON

Questions

Transford to the st

Contact info: Manasa Damera PE, CFM Manasa.Damera@aecom.com