

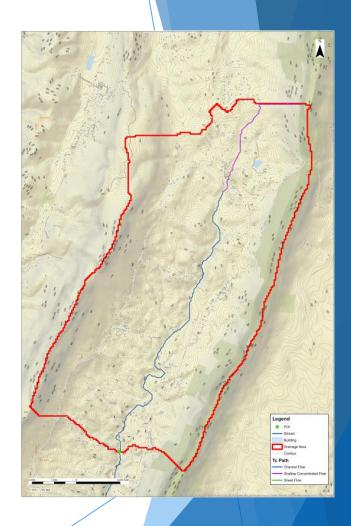
Prakash Khanal, PE Water Resource Engineering

Micah Ceary, PhD, PE, DBIA Structures & Bridge

- May 15-16, 2018 over 16 inches of rain fell on Southern Washington County (9.45 inches of which in 45 minutes).
- Garretts Mill Road Bridge over Israel Creek was overtopped and the flood plain inundated.
- The bridge and roadway was rendered unusable.

Source: Julie E. Greene May 29, 2018; South County resident Sophia Turner talks to Maryland Lt. Gov. Boyd Rutherford across a damaged bridge on Garretts Mill Road in Knoxville on May 16, 2018 during his visit to inspect damage left after strong thunderstorms caused severe flash flooding overnight.

- Washington County issued an RFP for Design-Build Replacement Project on July 5, 2018.
- Building Systems Inc. (Contractors) / Brudis & Associates, Inc. (Designers) was Awarded the Contract on August 24, 2018.
- The Project involved Hydraulically In-Kind Replacement of the Bridge and Roadway.



- Win TR-20 & GIS Hydro was used
- Drainage Area = 9.8 Sq. Miles
- No gage data available
- Calibration conducted using FRR equation and Tasker upper 67% confidence limits
- Existing condition land use was used

Summary of Discharges for Israel Creek at Garretts Mill Road

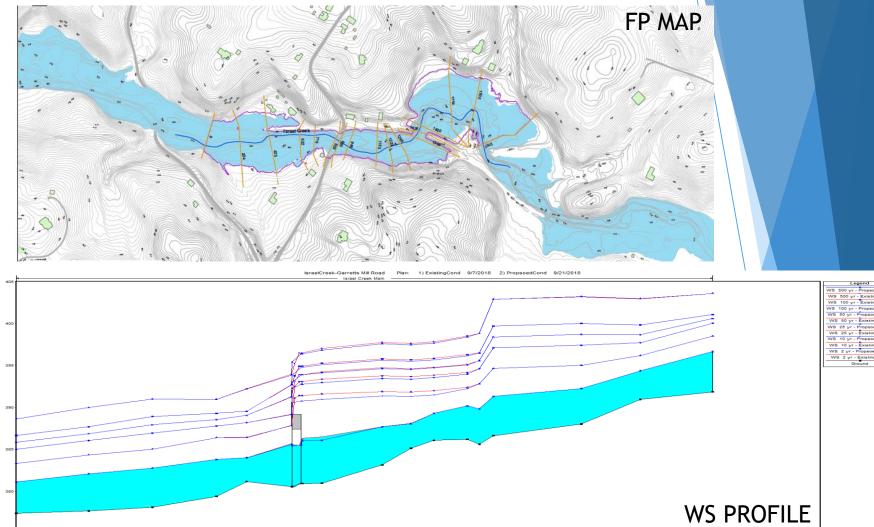
	Existing	Ultimate
	Development*	Development
RETURN	Conditions WinTR-20	Conditions WinTR-20
PERIOD (yr)	Estimate (ft3/s)	Estimate (ft3/s)
2	640	620
10	1,780	1,740
25	3230	3180
50	4,150	4,080
100	5,190	5,140
500	8,150	8,070

 Hydrology report submitted and approved by MDE using Expeditated Reviewers

GOALS:

HEC-RAS Model used to accomplish the following goals:

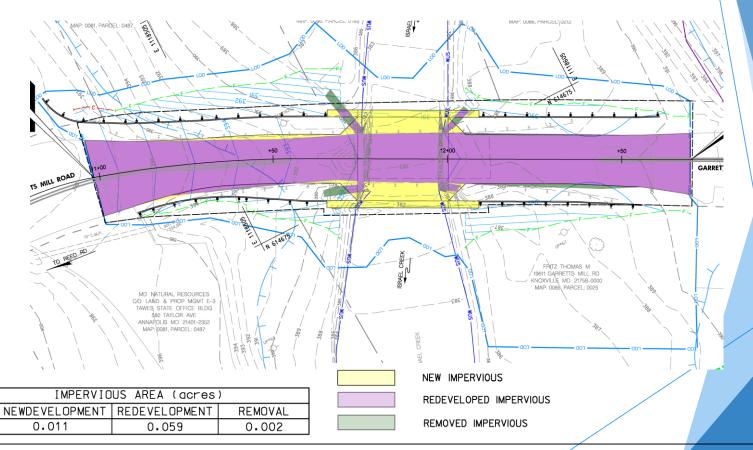
- Assess the impacts of proposed design on Shear Stress, Flooding Conditions and Overtopping Conditions
- Find optimum size of proposed structure
- Provide hydraulic parameter for scour analysis


RESULTS & RECOMMENDATIONS:

- No adverse impacts to the WSEL
- Hydraulic in-kind replacement with 26 ft long 28 ft wide CON/SPAN O-SERIES bridge
- Scour protection Not an issue due to rock outcrops at shallow depths

Hydraulic Report submitted and approved by MDE

Main Channel Distance (ft)



STORMWATER MANAGEMENT

REQUIREMENTS

- Project LOD = 0.35 Ac(> 5000 SF)
- SWM is required

WATER QUALITY:

- ESDv Required = 148 CF
- Additional nutrients (Phosphorus) reduction required
- Emergency project
- All SWM options were evaluated but not feasible
- Granted SWM qualitative control waiver under section 3.2.3 of Washington County's SWM ordinance

WATER QUANTITY:

- No increase in peak discharges at downstream of bridge
- SWM quantity control requirement satisfied

EROSION AND SEDIMENT CONTROL

REQUIREMENTS

- Project LOD > 5000 SF
- Excavation > 100 cy
- E & S design and permit required

Three phases were implemented:

- Phases 1 & 2- Demolition & Abutment foundation (emergency)
- Phase 3- Superstructure, Roadway

EROSION AND SEDIMENT CONTROL

Demolition & Abutment Sub-foundation (Phases 1 & 2)

- Construction entrance
- Silt fence
- Temporary stream diversion using concrete blocks
- Filter bag and pump

Superstructure & Roadway (Phase 3)

 Stream diversion using concrete barrier

DAYS SINCE NTP	ACTIVITY
0	NTP/BEGIN DESIGN
14	HYDROLOGY REPORT SUBMITTED
31	HYDROLOGY APPROVAL GRANTED
30	HYDRAULICS REPORT SUBMITTED
45	HYDRAULICS APPROVAL GRANTED
30	EMERGENCY PACKAGE SUBMITTED
40	EMERGENCY CONCURRENCE GRANTED
60	PHASE 1 & 2 CONSTRUCTION STARTED
140	SWM & EROSION CONTROL PERMIT GRANTED:
300	PHASE 3 CONTRUCTION COMPLETED

Demolition

Bridge was lifted by crane.

In-Stream Work

 In-stream diversion used, but high levels of rainfall and underground flow made this option unusable.

In-Stream Work

 Pump and pipe diversion was ultimately used with three additional pumps evacuating the work area for subfooting concrete pours.

New Bridge Installation

Questions ??

Prakash Khanal: pkhanal@Brudis.com Micah Ceary: mceary@Brudis.com

