wood.

Two RAS Approaches to Analyzing High Flows on a Stream Restoration Site

1D Quasi-Unsteady Sediment Modeling vs. 2D Unsteady Flow Modeling

Kristine Mosuela, EIT MAFSM 2019

woodplc.com

Summary

- Background / Context
- Problem / Questions
- Model Approach
- Results / Conclusions

Disclaimer

Modelling Environmental Flows

Background / Context

Background / Context

Post-Restoration Storms

Notable deposition 110 mm cobbles

Questions Post-Restoration

- Could a 1D model adequately predict the extent of the washout/deposition?
- How well does a 2D model perform?
- What kind of flows were needed to produce such a significant change in the bed?
- Which is the "best value" approach?

1D

1D

2D

2 RAS Approaches

1D

- Sediment Transport dynamics
 - Quasi-Unsteady
- 1D Flow multiple flood magnitudes
 - 1D Sediment Transport

→ Bed Composition

2D

- Flow dynamics
 - Unsteady
- 2D Flow multiple flood magnitudes
 - NO Sediment Transport

\rightarrow Velocities/Stream Power

2 RAS Approaches

1D

- Sediment Transport dynamics
 - Quasi-Unsteady
 - 1D Flow multiple flood magnitudes
 - 1D Sediment Transport

→ Bed Composition

Table 3 - Streambed Particle Distribution at project extents

Particle Distribution	Mean Diameter (mm)	Туре	Percent
D16 (mm)	36	Silt/Clay (%)	0
D35 (mm)	57	Sand (%)	0
D50 (mm)	76	Gravel (%)	41
D84 (mm)	190	Cobble (%)	55
D95 (mm)	250	Boulder (%)	4

Table 2 - Streambed Particle Distribution at Point Bar

Particle Distribution	Mean Diameter (mm)
D16 (mm)	5.2
D35 (mm)	9.7
D50 (mm)	12
D84 (mm)	41
D95 (mm)	61

DEM & Landuse

XS Placement

Bed gradation (soil composition)

Boundary conditions at US and DS

Temperature

DEM & Landuse

XS Placement

Bed gradation (soil composition)

Boundary conditions at US and DS

Temperature

1D Quasi-Unsteady Sediment Transport

1	al Condition	ns and Trans	port Parame	ters Bo	undary Condition	s USDA-ARS	Bank Stability a	nd Toe Erosion	Model (BSTEM) (Be	
	River: (All Rivers)				 Transport Function 		Ackers-White 💌		Define/Edit	
	Reach:				 Sortin 	g Method:	Thomas (Ex5) 👻	bed Gradat	
	Number of	f mobile bed	channels:	1		locity Method:	Ruby	-	Define Laye	
	River	Reach	RS	Invert	Max Depth	Min Elev	Left Sta	Right Sta	Bed Gradation	
	1	1	3742.304	1705.24	2		543.8	578.76	OutsideExtent	
	1	1	3472.138	1701.14	2		494.72	525.78	OutsideExtent	
	1	1	3196.44	1698.2	2		445.74	479.11	OutsideExtent	
ł	1	1	2931.685	1695.86	2		445.71	488.11	OutsideExtent	
	1	1	2775.999	1694.24	5		455.83	490.11	Riffle	
	1	1	2719.291	1693	5		467.84	502.37	Riffle	
	1	1	2643.275	1689	5		468.77	508.7	PointBar	
	1	1	2600.885	1690	5		465.82	512.75	PointBar	
I	1	1	2585.942	1691	5		464.82	513.76	Riffle	
	1	1	2552.674	1691	5		453.71	499.61	Riffle	
	1	1	2475.718	1687	5		424	475	PointBar	
	1	1	2446.354	1687	5		428.96	467.95	PointBar	
	1	1	2418.003	1689.75	5		429.64	468.53	OutsideExtent	
ł	1	1	2299.061	1688.14	2		304.63	346.5	OutsideExtent	
	1	1	2077.613	1685.56	2		275.86	314.51	OutsideExtent	
	1	1	1789.679	1681.98	2		127.67	168.57	OutsideExtent	
	1	1	1463.064	1679.92	2		132.47	167.91	OutsideExtent	
	1	1	1116.868	1675.86	2		175.79	217.74	OutsideExtent	
	1	1	852.454	1673.1	2		173.91	218.88	OutsideExtent	
	1	1	570.2384	1668.99	2		171.83	208.79	OutsideExtent	
l	1	1	268.689	1666.46	2		179.28	212.63	OutsideExtent	

C F	xed Start Time	199 5 9	Dat	e:	Time:
_					
			iyorograph Data		
No.	Ordinates	Interpolate Values	Del Row	Ins Row	
	Simulation	Elapsed	Flow	Flow Computation	
	Time	Time	Duration	Increment	Flow
		(hours)	(hours)	(hours)	(cfs)
1	04Dec2018 00	000 1	1	0.4	1
2	04Dec2018 01	100 2	1	0.4	43
3	04Dec2018 02	200 3	1	0.4	128
4	04Dec2018 03	300 4	1	0.3	264
5	04Dec2018 04	100 5	1	0.3	463
6	04Dec2018 05	500 6	1	0.2	650
7	04Dec2018 06	500 7	1	0.2	736
8	04Dec2018 07	200 8	1	0.2	682
v 0	ompute compu	itation increments	based on flow		
	Qlow	Qhigh	CI	•	
1		0 200	0.4		
2	20	0 600	0.3		
3	60	0 1200	0.2		
4	120	1800	0.1		
5	180	0 2400	0.04		
	0.40	0.000	0.00		

Nu	mber of flow-load points	4 sets	•		
t	Flow (cfs)	100	1000	2000	4000
	Total Load (tons/day)	1	43	119	312
1	Clay (0.002-0.004)	0.3	0.3	0.25	0.2
2	VFM (0.004-0.008)	0.2	0.15	0.15	0.15
3	FM (0.008-0.016)	0.2	0.25	0.3	0.35
4	MM (0.016-0.032)	0.2	0.2	0.15	0.1
5	CM (0.032-0.0625)	0.1	0.1	0.1	0.1
6	VFS (0.0625-0.125)			0.05	0.05
7	FS (0.125-0.25)				0.03
8	MS (0.25-0.5)				
0	0 5 10 5 11				

2 RAS Approaches

2D

- Flow dynamics
 - Unsteady
- 2D Flow multiple flood magnitudes
 - NO Sediment Transport

→ Velocities/Stream Power

2D Model Development

2D Model Development

2 RAS Results

2 RAS Results

2 RAS Results

2 RAS Results

2 RAS Results

Stream Power

5 25 100 From Wikipedia, the free encyclopedia

Stream power is the rate of energy dissipation against the bed and banks of a river or stream per unit downstream length. It is given by the equation:

 $\Omega = \rho g Q S$

where Ω is the stream power, ρ is the density of water (1000 kg/m³), *g* is acceleration due to gravity (9.8 m/s²), *Q* is discharge (m³/s), and *S* is the channel slope.

Plan View

Plan View

Plan View

Plan View

Plan View

Stream Power

<u>2</u>5

125 mm cobbles start to move at DS observed locations 50.0_

25.0_

10.0_

5.0_

2.0_

0.0.

13

76

- 2D flow & 1D sediment transport generally corroborate each other
- Some areas demonstrate observed phenomena
- Some areas do not
- >>> Useful as a check

2775.999

>>> Requires engineering judgment

719

POINTE

2 RAS Approaches

1D
Higher Effort
+ More detail
+ Dynamics of particular particles sizes US to DS

2D

+ Lower Effort + Big picture US/DS/side-side

Limitations/Improvements

- More comparisons: model vs. reality
 - Higher resolution XS/data within study area and outside of study area
- New models in RAS 5.0.3+
 - Unsteady Sediment Transport
 - BSTEM
 - Bank Stability & Toe Erosion model

Questions, Answered

- Could a 1D model adequately predict the extent of the washout/deposition?
- How well does a 2D model perform?
- What kind of flows were needed to produce such a significant change in the bed?
- Which is the "best value" approach?

Thank you!

Your questions?

kristine.mosuela@woodplc.com

