

Planning for Resilience in Northern Chesapeake Bay: Infrastructure System Considerations

Maryland Association of Floodplain and Stormwater Managers - 2019 Conference

Presented by: Chris Overcash, P.E., ENV SP

EA Engineering, Science and Technology, Inc. PBC

7 November 2019

Background and Purpose

- Goal Framework for management plan to decrease risks from sea level rise and storm events
 - Aberdeen Proving Ground
 - Harford County
 - Cecil County
 - Kent County

Critical Vulnerabilities and Scenarios

- Mean Higher High Water
- Relative Sea Level Rise from Climate Change
 - ◆ Identified from Boesch et al. 2018
 - Mid = 50% probability sea level rise meets or exceeds
 - High = 1% probability sea level rise meets or exceeds
 - For years 2050 and 2100
- Major Flood Stage from Storm Events

Current Conditions

2050 Mid SLR Scenario

2050 High/2100 Mid SLR Scenario

2100 High SLR Scenario

Critical Vulnerabilities

Infrastructure

 Utility stations, wastewater treatment plants, distribution and collection system piping, fire stations, SWM facilities, police stations, historic districts and easements and others

Environments

 United States Fish and Wildlife Service Wetlands, sensitive species project review area and others

APG - Overview

Harford County - Overview

Current Conditions

2050 Mid SLR Scenario – 1.2 ft increase

2050 High/2100 Mid SLR Scenario – 2.3 ft increase

2100 High SLR Scenario – 6.9 ft increase

Cecil County - Overview

Current Conditions

2050 Mid SLR Scenario – 1.2 ft increase

2050 High/2100 Mid SLR Scenario – 2.3 ft increase

2100 High SLR Scenario – 6.9 ft increase

W/WW Vulnerabilities

Elevation generally more conducive to higher protection of W/WW Infrastructure in the northern Bay then in southern portion

 WWTP – Many are in lower lying areas but only a few were found to be in a critical zone up to year 2100 - Port Deposit, Harbor View, Elkton

- WTP Havre de Grace
- Pump Stations –
 some were identified in each county

Adaptation Plan

Resilience Strategies

- Accommodate Focus on altering existing structures and building new infrastructure that is better able to withstand sea level rise and storm surge
- **Protect** Engineered solutions to decrease risks for existing structures and areas without changing existing items or features
- Managed Retreat Relocation of existing structures, and areas and limit construction of new infrastructure within areas anticipated to be flooded
- ***** Measures are implemented to execute the resilience strategies

Coastal Risk Reduction & Resilience Measures

Measure	Examples
Natural	Barrier islands, dunes, reefs, wetlands, and riparian corridors
Non-Structural	Structure acquisitions or relocations, flood proofing, implementing flood warning systems, flood preparedness planning, land use regulations, development restrictions within the greatest flood hazard areas, elevated development, managed retreat, evacuation, buyout and leaseback
Structural	Levees, storm surge barrier gates, seawalls, groins, revetments, and near-shore breakwaters

Nature-Based Measures

Dunes and Beaches

Benefits/Processes
Breaking of offshore
waves
Attenuation of
wave energy
Slow inland

Performance Factors

water transfer

Berm height and width Beach slope

Sediment grain size and supply

Dune height, crest, and width

Presence of vegetation

Vegetated Features

Benefits/Processes
Breaking of offshore
waves
Attenuation of
wave energy
Slow inland

water transfer Increased infiltration

Performance Factors

Marsh, wetland, or SAV elevation and continuity Vegetation type and density

Barrier Islands

Benefits/Processes
Wave attenuation
and/or dissipation
Sediment stabilization

Performance Factors

Island elevation, length, and width Land cover Breach susceptibility Proximity to mainland shore

Maritime Forests/Shrub Communities

Benefits/Processes
Wave attenuation
and/or dissipation
Shoreline erosion
stabilization
Soil retention

Performance Factors
Vegetation height
and density
Forest dimension
Sediment composition
Platform elevation

Non-Structural Measures

Floodplain Policy & Management

Benefits/Processes

Improved and controlled floodplain development

Reduced opportunity for damages

Improved natural coast environment

Performance Factors

Wave height
Water level
Storm Duration
Agency Collaboration

Floodproofing and Impact Reduction

Benefits/Processes

Reduced opportunity for damages

Increased community resiliency

Does not increase flood potential elsewhere

Performance Factors

Wave height
Water level
Storm Duration

Relocation

Benefits/Processes

Reduced opportunity for damages

Does not increase flood potential elsewhere

Improved natural coast environment

Performance Factors

Wave height
Water level
Storm Duration

Structural Measures

GENERAL COASTAL RISK REDUCTION PERFORMANCE FACTORS:

STORM SURGE AND WAVE HEIGHT/PERIOD, WATER LEVEL

Levees

Benefits/Processes

Surge and Wave attenuation and/or dissipation Reduce Flooding Risk Reduction for vulnerable areas

Performance Factors

Levee height, crest width, and slope Wave height and period Water level

Storm Surge Barriers

Benefits/Processes

Surge and Wave attenuation Reduced Salinity Intrusion

Performance Factors

Barrier height
Wave height
Wave period
Water level

Seawalls and Revetments

Benefits/Processes

Reduce flooding
Reduce wave
overtopping
Shoreline stabilization
behind structure

Performance Factors

Wave height
Wave period
Water level
Scour protection

Groins

Benefits/Processes

Shoreline stabilization

Performance Factors

Groin length, height, orientation, permeability and spacing Depth at seaward end

Wave height
Water level
Longshore
transportation rates
and distribution

Detached Breakwaters

Benefits/Processes

Shoreline stabilization behind structure Wave attenuation

Performance Factors

Breakwater height and width.

Breakwater permeability, proximity to shoreline, orientation and spacing

Dredged Material

- Resilience strategies often require sediment
- Important considerations
 - Collaborate with dredging operations
 - Proximity of dredge operation to site
- Sediment sources within project area
 - Northern Bay channel
 - Includes USACE channel north of Pooles Island
 - Anticipate 1.2M CY of sediment per year
 - Susquehanna Flats
 - Currently dredged every 4 to 5 years
 - 200,000 CY of sediment were used to expand Battery Island

Battery Island https://www.fws.gov/refuge/susquehanna/

W/WW Resiliency Strategy

Phase 1
Climate
Analysis

Phase 2 Vulnerability Analysis

Phase 3
Adaptation
Analysis

W/WW Resiliency Measures

For Existing Infrastructure

- ◆ Elevate Equipment
- Flood-Proof Equipment
- Seal Buildings
- Construct Barriers
- Temporary Measures (ex. sandbag)
- Install Backup Power
- Emergency Response
- Planning for the FutureAdaptive Design

ASCE Manuals and

Reports on Engineering

Adaptive Design

W/WW Resiliency Measures

- Prioritization based on criticality of equipment, vulnerability to flooding, and cost of 'do nothing' scenario versus benefits and costs of protective measures
- Number of vulnerable, critical assets increases with increases in sea level rise
- Final adaptation plan is usually a mix of emergency response, hardening assets and operational measures
- Based on time frame

Summary

Information gained can be used to develop specific Adaptation plans

https://apg-chesapeakejlus.com/157/Susquehanna-River-Impact-Accretion-Study

Thank You!

Presented by:

Chris Overcash, P.E., BCEE, ENV SP

